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PTOLEMY 
 

DAY 1 
 
 

INTRODUCTION TO PTOLEMY AND HIS ALMAGEST 
AND FIRST BACK YARD EXERCISES 

 
 
 
 
INTRODUCTION. 
 
Little is known about Claudius Ptolemaeus.  He was probably born at Ptolemais Hermii, and 
lived from around 100 A.D. to around 178, which means that all his astronomy was 
obviously “naked eye” astronomy, unassisted by binoculars or telescopes.  He did use and in 
some cases develop certain instruments (e.g. the astrolabe) for accurately measuring angular 
“distances” between celestial objects—for example, the angle formed by any two stars with 
the observer’s eye at the vertex.  Even that simple type of observation goes a long way, as we 
shall see.  He also had no precise, accurate, and universal means of telling the time of or 
measuring the durations of events (such as eclipses).  Water clocks and hour glasses and sun 
dials are plainly of very limited value in this regard.  Doing astronomy with Ptolemy can 
therefore feel like fighting with our hands tied!  But while we will try to understand how he 
got so far with so little, we will also sometimes “cheat” in order to see for ourselves how 
right he was about many of the basic facts on which he will base his theories.  We should not 
deny ourselves the use of binoculars and watches when these prove useful, for instance. 
 Besides the Almagest, the book which is the focus of this course on Ptolemy, he 
wrote other books on astronomy and also on geography.  His book Guide to Geography was 
largely a table of latitudes and longitudes of various places in the “inhabited world” (or in the 
world known to be inhabited in his time), and because of it he was almost as famous for his 
geography as for his astronomy. 
 The original title of his monumental astronomy book was rather uninspiring.  It was 
called “The Mathematical Composition.”  But it came to be called “The Great Astronomer,” 
and then the Arabs called it “The Greatest,” combining the Arabic prefix al to the Greek 
megiste, and ever since it has been called “The Almagest.” 
 Like Euclid’s Elements, it consists of 13 books.  Chapter One of Book 1 is a preface 
in which Ptolemy places astronomy among the other sciences in accord with his 
understanding of their classification, and a word or two about the great dignity of the study 
of the stars. 
 THE ORDER OF THE ALMAGEST.  In Chapter Two of the Book 1 Ptolemy 
explains the overall order in the parts of his book, which is roughly as follows: 
 
(1)  First, in Books 1 and 2, he determines the ratio and situation of the earth to the whole of 
the heavens (or universe).  This is like a general understanding of how we fit into the whole 
universe. 
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(2)  After that, in Books 2 and 3, he takes up the position of the “ecliptic”—don’t worry 
about that just yet, we’ll get to it.  He will also explain how to determine where you are on 
the earth and how certain celestial appearances vary according to your location on the earth 
(i.e. your latitude and longitude).  You can’t really get very far without this information.  It 
amounts to understanding your own point of view, your location as an observer and the 
properties of your place of observation. 
 
(3)  In Books 3 through 6 he develops the theory of the solar and lunar movements and their 
eclipses.  The prediction of lunar and solar eclipses was of central importance to ancient 
astronomers. 
 
(4)  Books 7 through 13 were devoted to the stars.  Books 7 and 8 were about the so-called 
“fixed stars”, which we would simply call “the stars” today.  He catalogued constellations 
and the like.  Books 9 through 13 were about “the wandering stars”, that is, the planets (the 
word “planet” comes from the Greek word for “wanderer”).  These five “wandering stars”, 
namely Venus, Mercury, Mars, Jupiter, and Saturn, don’t keep their positions among the 
other stars, the “fixed” ones, which all stay still relative to each other (so far as naked eye 
astronomy is concerned!). 
 
Note the order in which Ptolemy proceeds in his astronomy generally respects the following 
principles: 
 
•  He goes from what is at rest to what is in motion, and from what has fewer motions to 
what has more motions.  So he considers the Earth first, and the heavens only generally by 
contrast, before coming to the particular motions of things in the heavens.  And he considers 
the “fixed” stars first, since the “wandering” stars have all the motions that the “fixed” stars 
have and more motions in addition. 
•  He goes from what is close to us to what is further away (e.g. he takes up the sun and 
moon before the fixed stars, our own location on earth before the sun and moon).  He does 
talk about the sun before the moon, but that is because the moon is less regular in its motion.  
Similarly, although he talks about the fixed stars before the planets, that is because there is 
less for him to say about the “fixed” stars, since their motions appeared much more regular 
than those of the “wandering” stars. 
•  He also goes from what is easier to observe to what is harder to observe.  Hence he takes 
up the Earth first, the Sun next, the Moon next, then the fixed stars, then the wandering ones.  
The wandering stars or planets are in some ways easier to observe than the fixed ones, 
insofar as they are generally brighter.  But it takes many more observations to acquire any 
power of predicting where they will be in your sky at 6pm on some particular evening two 
years from now than would be required to make similar predictions about a “fixed” star.  We 
will see this soon enough. 
 
Ptolemy next subdivides the first part of his Almagest, concerning the ratio and situation and 
condition of the earth in relation to the whole of “the heavens”, i.e. in relation to that whole 
world of stars out there.  Here is what he intends to show, in order: 
 
 (i)  That the heavens are spherical and move spherically. 
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 (ii)  That the earth, in shape, is “sensibly” spherical. 
 (iii)  That the earth, in position, lies at the center of the universe. 
 (iv)  That the earth, in size, has the ratio of a point to the universe. 
 (v)  That the earth has no local motion at all. 
 
In short, he is arguing for a round earth and for a geocentric view of the universe.  Notice he 
is not arguing for a flat earth!  It is a myth that everyone believed the Earth was flat until 
Christopher Columbus proved the opposite.  Christopher Columbus proved no such thing, 
and many before him did prove it, including Ptolemy. 
 We will return to these first five Ptolemaic Propositions in Day 2.  But for the 
remainder of today, we will consider some basic back yard astronomy exercises in order to 
orient ourselves under the sky, and become familiar with what it means to be an observer of 
the heavens.  Ptolemy assumes we have this basic understanding, but most people don’t—not 
today any more than in his day.  Not all of these exercises can be accomplished in a single 
night, or even in a single week or month.  If possible, you should continue those which 
require more time throughout your reading of this course.  What you should find is explained 
in the notes following the exercises. 
 WARNING:  The exercises are extremely INCONVENIENT!  For that reason, I will 
not assume that you are willing to go through with them.  If you have the will, then by all 
means, make the observations for yourself.  But if you do not, read through what they ask of 
you, and see if you can guess what it is you should observe—and then read the subsequent 
explanations (included below the exercises as lists of “Phenomena”) of what you in fact 
would observe, if only you took the trouble.  But do not skip the exercises altogether, at least 
not if you are a beginner.  Little of what follows after will make much sense to you if you do. 
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EXERCISE 1 
 
Go outside on a clear night, as far away from “light pollution” as you need to get in order to 
see at least some stars clearly.  Pick certain conspicuous stars, and pick one spot on the 
ground or in a chair from which to view those stars over the course of several hours.  You 
need not watch them continuously, but pick something like a tree or building or mountain to 
compare their location to, so that you can see whether they are moving and in what direction.  
Do all the stars move?  Do they somehow move together?  What seems to be the shape of the 
path of each star?  
Several times during the course of one hour, note the positions of several bright stars which 
are nearly overhead.  In what direction do the stars appear to move? 
 
EXERCISE 2 
 
If you know you are in the northern hemisphere, find Ursa Minor, also known as “The Little 
Dipper.”  Watch what that dipper does over the course of several hours, and describe it.  If 
you happen to be in the southern hemisphere, find Octans or Hydrus or Apus, and describe 
what these constellations do in the course of several hours. 
 
EXERCISE 3 
 
Observe some star which sets at a time convenient for you to observe.  It’s all right if you 
cannot observe it setting on the true horizon.  If you can watch it disappear behind a distant 
mountain or hill, that will do—but not behind some nearby or mobile object, like your own 
hand!  Always observing it from exactly the same spot, and with your eye in precisely the 
same spot (you must use some sort of fixed object to determine this, like the edge of a railing 
you can use as a line of sight), record the exact time of its setting at least 5 nights in a row.  
Is its setting time always the same?  Does it set at the same place on the horizon every night? 
 
EXERCISE 4 
 
Observe where the sun sets on your horizon at least every third day for two to three weeks.  
You must again take care to observe this with your eye looking along exactly the same line 
of sight and from the same location each time.  You should make a record of the locations of 
the settings, perhaps by drawing fixed distant landmarks, such as mountains and trees, and 
marking where the sun set in reference to these.  If at all practical, see if you can do this for a 
full year, with dates above each location of the sun.  What pattern can you discern in the 
settings? 
 
 
EXERCISE 5 
 
Find a place from which you can observe as much of the true horizon as possible, and from 
which you can observe the sun rising above and setting below this horizon (rather than some 
higher “horizon” like the ridge of a mountain range).  Go to this place and observe the 
sunrise and (on the same day) the sunset and record the times.  This will give you the length 
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of the day on that day of the year in your location on earth.  Do this at least once a month.  
Are the days unequal?  If so, around what time of year does the day appear to be longest?  
When is it shortest?  Are there days of equal length? 
 
 
EXERCISE 6 
 
Find some constellation that rises in the east soon after the sun sets in the west.  Every third 
evening or so, for about 3 weeks, record the exact time of the setting of the sun (again taking 
precautions to do this from the same spot, and with the same line of sight each time), and, 
facing about, record the exact time of the first star to rise in the constellation you are 
observing.  Do the times stay the same?  Does the interval between the sun-set and the star-
rise remain the same?  What kind of pattern or movement do you seem to be observing? 
 
 
EXERCISE 7 
 
Observe the moon for five successive nights, beginning as soon as possible after the new 
moon (the dates of the moon’s phases can be found on many calendars).  Each night, note in 
which constellation it lies, and near which particular stars.  Is the moon always in the same 
place relative to the stars?  If not, how does it move?  Each night, note the time of the 
moon’s setting.  Does it set at the same time each night?  If not, how does it change? 
 
 
 
 
 
 
 
 
 
 
 
 
PHENOMENA RELEVANT TO EXERCISE 1 
 
Stars directly overhead appear to move from east to west.  If you are facing due north (or due 
south in the southern hemisphere), and you wave with your right arm over your head, the 
stars move that way. 
 The path of each star is a circle, but that is not easy to discern with any degree of 
exactness unless you can find the “poles” of the stars’ motion.  They all move together in 
concentric circles about the north and south “celestial poles,” the two spots in the night sky 
that don’t move.  If you live in the northern hemisphere, you will see only the north celestial 
pole in your sky; if in the southern, you will see only the south celestial pole in your sky.  If 
you live at the equator, you will see both at once, each one lying right on your true horizon.  
We will come back to these things more distinctly as we get back into Ptolemy. 
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PHENOMENA RELEVANT TO EXERCISE 2 
 
 
The star at the end of the handle of “The Little Dipper” is Polaris, the North Pole Star.  The 
Little Dipper itself moves counter-clockwise around Polaris, like a clock-hand going the 
wrong way.  All stars in the northern hemisphere move counter-clockwise around Polaris.  
Polaris itself basically sits still—not exactly, since it does not sit exactly at the North 
Celestial Pole, but it is fairly close.  So really, it makes a tiny circle up there around the true 
North Pole.  If you took a very circular tube (like a telescope-tube!) and fixed it on a stable 
tripod, and centered it on Polaris, then, looking inside the tube, any star which was on the 
edge of your circular field of vision would go exactly around that circle counter-clockwise.  
So the motion is quite circular. 
 If you live in the southern hemisphere, then the stars go in concentric circles 
clockwise around the South Celestial Pole.  There is no easily visible star very near the South 
Celestial Pole—so there is no southern analog to our Polaris in the northern hemisphere.  But 
with care, you can still find that spot in the night sky that doesn’t move—it is not far from 
Sigma Octantis, if you can find that naked-eye star. 
 Does it make sense for there to be two poles for the motion of the stars?  Of course.  
The heavens can be thought of as a big ball up there (remember, we are soon going to start 
off as geocentrists with Ptolemy!).  When you spin a ball, there are two spots on its surface 
that don’t move, namely the ends of the axis of its rotation, the one diameter that stays in the 
same location.  If you were inside the ball (on a little planet in the middle), and the rotation 
about one pole looked clockwise to you, then the same rotation about the other pole would 
look counterclockwise to you.  That is a sample of the kind of imagining one must do in 
order to grasp the art of astronomy! 
 
 
PHENOMENA RELEVANT TO EXERCISE 3 
 
You will observe that a given star sets about 3 minutes and 55.91 seconds earlier each night 
(but this is regular year round).  So one “sidereal day” (i.e. the time it takes a star to go 
around the earth) is shorter than a 24 hour day by that much, i.e. one sidereal day = 23h 56m 
4.09 seconds. 
 The setting place of a star is basically the same every night (or during the day, if 
that’s when it is in the sky for us).  This is because the fixed stars do not change their 
location relative to each other (ignoring the way they drift about in our galaxy, and thus 
change the constellations, but too slowly for us to see by the naked eye during a human 
lifetime), and again because the celestial poles do not move in our sky (ignoring the 
precession of the equinoxes, or the swivel in earth’s axis, which has a period of about 25,000 
years, and which we will talk about later!). 
 
 
PHENOMENA RELEVANT TO EXERCISE 4 
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The sun, however, does not set at the same place on the horizon each night, but will set more 
and more to the north between late December and late June, and then, turning around and 
going the other way, it will set more and more to the south between late June and late 
December.  And there will be a definite range of all its settings on your horizon.  You will 
never see it set due north, for example.  So there is a range of places it can set (and, 
conversely, rise) on your horizon, but it is a definitely limited range. 
 
 
PHENOMENA RELEVANT TO EXERCISE 5 
 
If you happen to live at the equator, all your days and nights will be 12 hours.  If you live 
anywhere else, you will have unequal days and nights.  Let’s suppose you don’t live very 
close to the arctic or the antarctic circles (we will talk about those later).  Then, if you are in 
the northern hemisphere, your longest day (and shortest night) will occur around June 20 or 
so.  Your shortest day (and longest night) will occur around December 20 or so.  And your 
longest day will be equal to your longest night!  Two days will be equal in length:  around 
March 20 and around September 20.  On those days, you get a 12-hour day and a 12-hour 
night.  But the length of your longest day (or, what is the same, the length of your longest 
night) depends on your latitude, i.e. on how far away you live from the equator.  We will see 
more about that with Ptolemy’s help later. 
 
 
PHENOMENA RELEVANT TO EXERCISE 6 
 
We have seen that each night the stars set (or rise) almost 4 minutes earlier than 24 hours 
from their last setting (or rising).  But each night the sun sets an average of 24 hours from its 
last setting.  That means the time separating the sun’s setting, and the setting of some 
particular star, gets less every night.  If the sun sets at the same time that some star S rises, 
what will happen in 24 hours?  The sun will be setting, but that star will already have been 
above the horizon for almost 4 minutes.  Effectively, the sun not only has a daily motion in 
the same direction as the stars, but it also has a “lagging behind” motion, so that it is 
gradually creeping eastward among the fixed stars!  Plato called the daily, obvious motion of 
the Sun “the motion of the same,” the general motion it has in common with all the other 
stars, and he called its backward, eastward motion “the motion of the other,” its distinctive 
motion.  We can also call these the “daily” and “yearly” motions, since it takes only one day 
for the Sun to go about the Earth (remember, we must get ready to think Ptolemaically!), but 
it takes a whole year for the Sun to creep all the way back through the stars once, and get 
back to its same spot among the stars that it was in before. 
 If we plot the Sun’s “backward” yearly motion eastward through the constellations, it 
turns out that it makes another circle up there, a circle which is not parallel to all the 
concentric circles about the two celestial poles.  Although we will introduce it again later, we 
might as well note here that this circle of the Sun’s yearly backward path is called the 
ECLIPTIC.  (Probably it has this name because it is only on this circle that solar and lunar 
eclipses can occur, because the Sun is always somewhere on that circle, and we, as we shall 
see, are at the center of it.)  Moreover, it will turn out that the moon and the 5 planets travel 
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roughly along that same circle, and also have their own “backward” motions among the fixed 
stars. 
 
 
 
PHENOMENA RELEVANT TO EXERCISE 7 
 
The moon sets about 40 to 50 minutes later each night.  But the stars set about 4 minutes 
earlier each night than their last time of setting.  So if the moon set together with star S 
tonight, tomorrow night star S will be setting and the moon will be 40 or 50 minutes behind 
S, which is to say the moon will be that much further east of star S the next night.  
Consequently, the moon, like the Sun, is also creeping backward through the stars (and also 
roughly along the ecliptic), which is to say eastward, although much faster than the Sun—the 
moon completes one such circuit in about 1 month (27.3 days). 
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PTOLEMY 
 

DAY 2 
 
 

THE BASICS OF THE GEOCENTRIC MODEL 
 
 
 
DIAGRAM. 
 
The Exercises in Day 1 contain some of 
the most basic observations at the 
foundation of Ptolemaic astronomy.  
There was no diagram to accompany 
them because it is good to begin from 
raw data.  That way, one can distinguish 
pure observation from the model 
produced for the sake of understanding 
it.  We will now begin to introduce 
diagrams and to try to account for the 
facts, beginning with just the daily 
rotation of the stars, and working our 
way to the Sun’s “backward” motion 
along the “ecliptic”, and eventually to 
the planetary motions, introducing new 
observations and phenomena along the 
way, as needed. 
 The first diagram depicts the 
Earth, and a very large you (for clarity) standing upon it.  Suppose you are in the northern 
hemisphere, and you are looking at Polaris in the night sky, the tail end of the “Little Dipper” 
(or Ursa Minor).  We draw an imaginary plane under your feet where you stand, tangent to 
the surface of the Earth (which we depict as a sphere, although we will argue for that 
shortly), and that plane is extended till it meets the “sphere of fixed stars”, at whose center 
the Earth sits, immobile.  This celestial sphere has all the “fixed stars” fixed upon it, and as it 
rotates, we see them all make counter-clockwise concentric circles about P, Polaris (or, more 
precisely, about the North Celestial Pole, which is very near Polaris).  We have not yet 
argued for any of these ideas, but these are the basic elements of the Geocentric Model. 
 The circular plane under your feet, tangent to the Earth, is called your “horizon.”  It 
extends out as far as the stars.  If the stars lie on a sphere, then the line which forms your 
horizon is a circle on that sphere.  More than that, if the Earth is of insignificant size 
compared to the sphere of fixed stars (its size is exaggerated in the diagram just for the sake 
of clarity), and if the Earth sits at the center of the sphere (as Ptolemy will propose and 
defend), then your horizon is a “great circle” on the celestial sphere.  A “great circle of a 
sphere” is a circle whose center is the same as the center of the sphere on which it lies, and 
so it is a circle of the largest possible size on that spherical surface.  Not every circle on a 
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spherical surface is a great circle.  For instance, the circles which the stars in the Little 
Dipper make around Polaris are not great circles, although they are circles on the sphere of 
fixed stars.  Their centers lie closer to Polaris than to the center of the sphere itself. 
 Now let’s familiarize you with some of the properties of your horizon.  First of all, 
you can see everything above that plane, but nothing beneath it.  Choose any star R on the 
sphere of fixed stars which lies below that plane, and join R to you by a straight line.  Then 
that line has to cut the sphere of the earth at some 
point K.  That is a basic fact of spherical geometry.  
The line joining you to K must lie entirely inside the 
Earth, another fact of spherical geometry.  Hence there 
is no way for you to see R, since a big chunk of solid 
earth lies between it and your eye. 
 The diagram might make it seem as though you 
are lucky to be seeing fully half of the sphere of fixed 
stars, since you happen to be standing at the center of 
the celestial sphere, whereas other people on Earth 
would not be, but would be standing some terrestrial 
distance away from you, and hence away from the 
center of the sphere of fixed stars.  But since the Earth 
(as we shall see) has no significant size compared to 
the celestial sphere, those terrestrial distances make no 
real difference.  It is as if everyone were standing at the center of the celestial sphere.  
Imagine growing the Earth inside the diagram (but put its center at the center of the celestial 
sphere) so that it becomes almost as big as the celestial sphere itself:  Then you will get 
scrunched up near the top of the celestial sphere, and your horizon will cut off a very tiny 
portion of the celestial sphere, and so you will see very little of it; much, much less than half.  
Conversely, if you imagine shrinking the Earth till it is a microscopic speck in the diagram, 
sitting right at the center of the celestial sphere, your horizon will cut off pretty much exactly 
half the celestial sphere.  And whether we think there is a celestial sphere or not, we can 
show that the size of the Earth is insignificant compared to the distances out to the stars (as 
we shall see). 
 Now consider the point on your horizon directly below Polaris, and call that N.  The 
line joining you to N points to terrestrial North.  If you were to walk in that direction long 
enough, Polaris would keep moving up in your sky until eventually it was directly overhead 
and you were standing on Earth’s North Pole.  (Don’t try that.)  Extend the same straight line 
from N behind you, now, and that will point due South on your horizon.  Directly to your 
right is East, and to your left is West, if you are facing Polaris.  As we noted in Day 1, all the 
stars, as well as the Sun and the Moon, rise somewhere on the Eastern portion of your 
horizon, and move together in apparently concentric circles around Polaris, and set 
somewhere in the West.  If we extend the line “from Polaris to you” below your horizon, 
through the Earth, and out to the celestial sphere, that point is the South Celestial Pole.  This 
straight line joining the North Celestial Pole (near Polaris) to the South Celestial Pole is the 
“axis of the daily motion,” the axis around which the whole celestial sphere spins once every 
24 hours (roughly).  Strictly speaking, that axis goes not through you, but through the center 
of the Earth.  But since you are an insignificant distance away from the center of the Earth, 
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compared to the distances out to the stars, it makes no difference which we say, so far as the 
stars are concerned. 
 That is our first diagram, and our first taste of the Ptolemaic geocentric model of the 
universe.  Soon we can begin to bring forward some of Ptolemy’s arguments in favor of it. 
 
 
SCHOLIUM ON THE FOUR POINTS OF THE COMPASS 
 
How are North, South, East, and West defined? 
 “Celestial North” means the spot in the heavens that does not move, near the pole 
star.  On earth, the place called “Terrestrial North” means the spot where Celestial North is 
directly overhead.  (Do not confuse this spot with magnetic north, which is not exactly the 
same!)  On earth, if you can see Celestial North (Polaris), but it is not directly overhead, the 
direction called “North” means the direction toward the place on your horizon directly below 
Celestial North in the sky.  If you cannot see Celestial North, then you can see Celestial 
South, in which case the spot directly beneath it on your horizon is the direction called 
terrestrial “South,” and the opposite direction is “North.” 
 “West” = directly to your left as you face north. 
 “East” = directly to your right as you face north. 
 
 
PROPOSITION 1:  THE HEAVENS MOVE SPHERICALLY. 
 
In Book 1, Chapter 3 of his Almagest, Ptolemy argues that the heavens move spherically and 
uniformly.  In these arguments, one is presuming that it is the heavens, not the Earth, that is 
moving.  The arguments do not prove this, but assume this, and go on to prove that the 
motion of the heavens must be spherical and of uniform speed (so far as the unaided senses 
can determine). 
 
[A]  If you pointed a perfectly circular tube directly at Celestial North, through the tube you 
would see the stars on the edge of the tube trace out the circular shape of the tube.  They 
would not stray from it.  And this is true no matter how big a piece of sky you can see 
through the tube.  Also, if you use a watch (Ptolemy would have had to make do with an 
hour glass or a water clock), and time how long it takes the star to go through any eighth-arc 
of its full circle, it will take exactly that long for it to go through any other eighth-arc of the 
circle.  So the motion is uniform. 
 
 
[B]  Other ideas about how they move 
make no sense.  For example, if we 
supposed that the stars move along straight 
lines, away to infinity, then the same stars 
would never return.  But the same stars do 
return.  So that cannot be how they are 
moving. 
 Earth

A B A B

1 2
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[C]  In fact, if the fixed stars moved around us by being carried along any surface other than 
a spherical one, they could not possibly keep the same angular distances from each other 
from our point of view unless they changed their actual linear distances from each other, 
which would be very complicated and bizarre—as though the universe were playing a trick 
on us, making it look as though the stars kept the same linear distances from each other, but 
really they didn’t.  To see this, imagine yourself observing two stars, A and B, at two 
different times.  Suppose A and B are carried along on some surface other than a spherical 
one—say a flat surface, moving by like a conveyor-belt.  At one time, the angle between A 
and B and your eye at the vertex (which you can measure with a graduated protractor whose 
arms are sighted against the stars with your eye at its vertex) is angle 1.  Later, if A and B 
stay the same distance apart from each other, the angle between them will be angle 2, a much 
smaller angle as A and B get further away from you.  The only way to keep the apparent 
angle between A and B the same, then, would be to have the distance between them increase 
as they got further from you.  And that makes it seem as though the universe is playing a 
trick, just especially on you.  Since that is ridiculous, we have to say instead that A and B 
keep the same distance from each other, as well as the same apparent angle from each other, 
which happens only if they are moving on a sphere. 
 And, Ptolemy points out, if you think the fact that the stars appear larger near the 
horizon (like the moon) proves they are closer to us there, you are wrong.  He attributed this 
fact (which is at least to some extent an illusion) to the atmosphere.  We are looking out 
through more atmosphere, and more moisture, when we see a star near the horizon than 
when we see it nearly overhead, and that affects its appearance. 
 
Ptolemy gives other arguments, but these are the clearest and best of them.  Note that no 
argument here establishes that the fixed stars are all the same distance away from us.  They 
could be stuck in a giant crystalline sphere at different distances from us, so far as these 
arguments are concerned.  But they maintain their distances from each other (hence they are 
called “fixed” stars), and always appear to have the same angle between them when we 
observe them with a sighting instrument. 
 
 
 
 
 
 
PROPOSITION 2:  THE EARTH IS SENSIBLY SPHERICAL 
 
Ptolemy proves this in Book 1, Chapter 4 of his Almagest.  Note again that he knew this long 
before Christopher Columbus—and it was known long before Ptolemy, too.  But why does 
he say “sensibly” spherical?  I think for two reasons.  One, because you can actually see the 
curvature of the earth, e.g. when a ship approaches from over the horizon, first you see the 
top of the mast, and later the ship itself, so that the bulge of the Earth between is visible.  
Two, because the earth is not a perfect mathematical sphere, as we can see from its 
mountains and valleys, but when one gets back far enough, the whole impression is very 
nearly a sphere.  It is truer to say that the Earth is an “oblate spheroid,” a bit fatter about the 
equator and squashed in at the poles, but not much. 
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ARGUMENTS FOR THIS BASED ON LONGITUDE: 
 
Positive Arguments 
 
(a)  Even without watches, we can know the sun rises and sets sooner in the eastern parts of 
the earth than in the western parts (e.g. in New England vs. California).  And an eclipse of 
the sun is a more or less simultaneous event that can be seen from regions fairly far apart on 
earth (from very different longitudes).  But the sun is higher in the sky for eastern folk (when 
an eclipse occurs) than it is for western folk.  So the earth is roundish in an east-west 
direction.  And since the further east you go, the higher the sun is in the sky proportionally 
for a given moment (like an eclipse), the earth is circular in an east-west direction. 
 
When an eclipse occurs, for instance, the sun is right overhead for Europeans, but still rising 
for midwestern Americans. 
 
 
 
 
 
 
 
 
 
(b)  Mountains on land appear to rise out of the sea as we sail in from sea toward the shore, 
and so the ocean is convex.  This argument is independent of direction, unlike (a) which 
argues that earth is round in the east-west direction, or longitudinally. 
 
(c)  An additional argument:  The earth’s shadow during a lunar eclipse is circular. 
 
 
Negative Arguments 
 
(1)  A concave earth (from E-W) would mean that the people in the West would see the sun 
rise before people in the East.  That doesn’t happen. 
 
 
 
 
 
 
 
(2)    A flat earth (from E-W) would mean that stars would rise and set at the same time for 
people in the East and in the West.  That doesn’t happen. 
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(3)  A polyhedral solid earth (from E-W) would mean that stars would rise and set at the 
same time for any people at the eastern and western edges of a flat face on that solid.  But 
again, that does not happen.  Even at relatively small distances, e.g. if A lives 200 miles west 
of B, there will be observable differences in the time of the rising of the sun.  Today, we can 
easily verify this.  If you live in New Hampshire, call your friend in California just as the sun 
is rising for you.  He will be angry with you, because it will still be completely dark where 
he is—the sun is above your horizon, but still below his for another three hours.  Ptolemy did 
not have telephones, nor could he bring a watch with him and travel 200 miles or so west and 
just record the time the sun rose on his unadjusted-to-local-time watch.  He would rely on 
things like eclipses, which could be observed simultaneously by people 200 miles apart, and 
who could observe how high up in the sky the sun was for them at the time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ARGUMENT BASED ON LATITUDE 
 
(4)  A cylindrical earth (standing N-S) would mean there are no always-visible stars for 
inhabitants of the curved surface.  All stars that could be seen from the curved surface would 
move from East to West and eventually lie behind the earth, and hence be invisible until they 
rose again.  But, with the exception of earth’s equator 
(where all stars move from east to west with the 
exception of Polaris, which sits still right on the 
northern horizon, or nearly so), from anywhere on earth 
there will be stars that are always visible, i.e. that never 
set (although they will be hard to see during the day, 
thanks to the Sun). 
 Also, a cylindrical earth (standing N-S) would 
mean there would have to be some stars which are 
visible from all latitudes along that cylindrical surface.  
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For example, Polaris would be visible from all latitudes along that surface.  But in fact, it is 
possible to go south far enough that Polaris disappears below one’s horizon (just as we 
cannot see the south celestial pole if we live in the northern hemisphere). 
 According to a cylindrical model of the earth, there would be no change in which 
stars were visible as we went north or south.  As it is, when we travel north, certain stars in 
the south dip below the horizon and are never to be seen from that latitude, and new stars 
become visible above the northern horizon that were not visible where we were before.  As 
Ptolemy puts it:  “the more we advance towards the north pole, the more the southern stars 
are hidden and the northern stars appear.” 
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PTOLEMY 
 

DAY 3 
 
 

MORE BASICS OF THE GEOCENTRIC MODEL 
 
 
 
PROPOSITION 3:  THE EARTH IS AT THE CENTER OF THE UNIVERSE 
 
Ptolemy argues for this in Book 1, Chapter 5 of his Almagest. 
 
He argues like this: 
 
If the earth is not at the center of the celestial sphere, then either: 
 [A]  It is off the axis, but equidistant from the poles 
or [B]  It is on the axis, but not equidistant from the poles 
or [C]  It is both off the axis and not equidistant from the poles. 
 
 
 
PROBLEMS WITH [A] 
 
 
(1)  Ptolemy probably never went to earth’s equator.  Nonetheless, he makes correct 
assumptions about what one would see there, and today we can argue from this more 
confidently, since people live at the equator, and we can call them up or travel there 
ourselves. 
 Just as the terrestrial north and south poles are 
defined by the celestial ones, so too the terrestrial equator 
is defined by the “Celestial Equator.”  The celestial 
equator means the great circle in the sphere of fixed stars 
which is at right angles to the axis of daily rotation, i.e. to 
the diameter passing through the celestial poles.  To see 
where the celestial equator is in your sky, make an “L” 
shape out of two straight rods at right angles to each 
other.  (You can just imagine this, you don’t actually 
have to do it.)  Point one leg of this rod at Polaris, i.e. at 
Celestial North.  The other will point somewhere up in 
the sky.  Twist the rod pointed at Polaris, and the end of 
the other rod will be tracing out where the celestial 
equator is in your sky. 
 If Polaris is above your horizon, going 90° straight overhead from it will clearly take 
you beyond your “zenith”, that is, beyond the point in your sky straight overhead.  So the 
celestial equator will not be at right angles to your horizon.  But if Polaris is right on your 
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horizon, then going 90° from it in a direction perpendicular to the horizon will take you right 
to your zenith, and so the celestial equator will be at right angles to your horizon.  And in 
that case, you live somewhere directly under the celestial equator, which is to say, you live 
on Earth’s equator, the terrestrial equator. 
 Ptolemy calls this view of the heavens, the one that you have at the equator, the “right 
sphere.”  That means the spherical motion of the heavens is at a right angle to your horizon, 
instead of coming up from your horizon at a slant.  Most of us, however, live in an “oblique 
sphere,” a place where the motion of the heavens comes up from our horizon at a slant, and 
so the celestial equator is not straight overhead, but it is to some degree oblique to our 
horizon. 
 
 
 With those terms in place, we can now argue against option [A]. 
 
 

If we try to suppose that the earth lies off the 
celestial axis somewhere, as depicted in the 
accompanying figure, what would that do to 
the appearances for someone living on earth’s 
equator?  Suppose you live there, and we 
draw you standing up on the earth as the little 
tiny stick to the right of the little earth.  You 
will never get an equinox if earth is off the 
axis, since the sun rises at R, culminates at K, 
sets at T, and so daylight is arc RKT, which is 
much less than the night arc below your 
horizon.  The truth is that every day is an 
equinox in the right sphere, i.e. at the equator.  

So option [A] is obviously impossible. 
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(2)  In the “oblique sphere” (i.e. anywhere else), either you never get an equinox, because the 
one place where the sun’s path would be cut in half by the horizon, namely RKT, is beyond 
the limits of the sun’s yearly motion (W & Z), or you get an equinox, but at a place EXG, 
which is not half way between the limits of the sun’s yearly N-S motion (contrary to the 
facts). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(3)  Again, if the earth stood away from the celestial axis, 
then, anywhere on earth, e.g. at earth’s equator, the time from 
star rise (R) to star culmination (K) would be much less than 
the time from star culmination (K) to star set (T).  And stars 
would appear much bigger at R than at T.  And none of that is 
observed. 
 
 
 
 
And if I am in the right sphere, and TNRS is my horizon (I am standing on the little earth in 
the diagram, and you are looking straight down at my head), then the angle between stars A 
& B will differ as they go west.  But that is not observed.  (Note that these arguments assume 
what we argued for earlier, namely that the stars are moving by being carried along with a 
giant celestial sphere.) 
 
 
 
 
 
 
 
 
 
PROBLEMS WITH [B] 
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Even if we put the earth on the axis, we run contrary to many observations if we shift if off-
center.  To see this, let’s start by introducing another term, the “zodiac.”  We saw on Day 1 
that the Sun creeps “backward” (eastward) through the fixed stars, taking a year to complete 
one such circle.  That great circle on the celestial sphere is called the “ecliptic,” and it has a 
fixed location among the stars.  More exactly, the ecliptic is not the circle which the Sun is 
actually on, but the one it appears to move on from our viewpoint—it is the circle of the 
Sun’s apparent motion in the fixed stars.  (The Sun is actually a lot closer to us than the fixed 
stars, and Ptolemy knew this.)  The ecliptic, in other words, is a projection of what the Sun 
seems to do around us onto the distant backdrop of the fixed stars.  So we can plot out, on 
any chart of the stars, the line along which the Sun makes this slow, backward crawl, and 
you will in fact see such a line labeled “ecliptic” in most star charts.  You might wonder how 
we can do this, since the Sun is so bright it makes it impossible to see the stars anywhere 
near it.  How can we say where it is among the stars?  Well, we can plot the stars at night, of 
course, and throughout the year, as the Sun creeps eastward, we gradually see different stars 
at night.  So it is that we have “summer” constellations and “winter” ones.  After a year of 
careful charting, we will have seen all the stars that the Sun moves through (and this work is 
already done for you on any star chart).  To see which stars the sun is among right now, we 
need only look at which stars are rising in the east just as the sun is setting in the west, and 
then look at our star chart and see which stars are 180° away, or directly opposite, those 
rising stars.  Those opposite stars will be the ones that the Sun is in right now. 
 It so happens that the other “wandering stars,” the five naked-eye planets (Mercurcy, 
Venus, Mars, Jupiter, Saturn), and even the Moon, also “creep backward” roughly in the 
vicinity of the ecliptic, although they do not quite stick to it as the Sun does.  All these 
celestial bodies are always to be found within about 8° (with our eye at the vertex of the 
angle, as always) north or south of the ecliptic.  So there is a whole belt up in the night sky, 
8° on either side of the ecliptic, which is very important to watch because all the planetary 
and solar and lunar stuff happens in there.  This belt is called the “zodiac.”  It is divided into 
12 equal portions, each one being 30° (thus totalling the 360° of the zodiac).  Each of these 
portions is called a “sign,” and is named after the principal constellation within it.  They 
began (by convention) at the spot where the Sun was on the day of the spring equinox (more 
on equinoxes later).  The twelve familiar “signs of the zodiac” are: 
 
 Aries  (the Ram) 
 Taurus  (the Bull) 
 Gemini  (the Twins) 
 Cancer  (the Crab) 
 Leo  (the Lion) 
 Virgo  (the Virgin) 
 Libra  (the Balance) 
 Scorpio  (the Scorpion) 
 Sagittarius (the Archer) 
 Carpricornus (the Goat) 
 Aquarius (the Water Bearer) 
 Pisces  (the Fishes) 
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Apparently it is because most of these are animals that the “zodiac” got its name from 
“animal-circle” in Greek, or some such combination. 
 Now let’s get back to the argument against [B], that is, against the idea that the Earth 
might be on the celestial axis, but off-center. 
 
 
 
(1)  If you are anywhere besides the right sphere (since in the 
right sphere the horizon would still divide the zodiac into 
equal parts), your horizon would cut the zodiac into unequal 
parts.  But we can always see 6 signs, no matter where we 
live, and 6 signs = 180° on the sphere (which we know 
because any 6 signs can fill our sky, so any 6 signs are equal 
to any others in angular length, so any 6 must be 180°).  So 
our horizon in fact cuts the zodiac into equal parts.  So it is not 
possible for the Earth to be on the celestial axis, but off center. 
 
 
 
(2)  Again, suppose it is the day of an 
“equinox”, a day of equal daylight and 
darkness (12 hours each).  That happens 
when the Sun is on the celestial equator (the 
ecliptic, the great circle that the Sun is 
always appearing to move on, cuts the 
celestial equator at two points).  If Earth is 
on the celestial axis, but off-center, as in the 
accompanying figure, an equinox will occur 
when the Sun’s backward crawl brings it 
onto the celestial equator, so that on that one 
day it rises at R and sets at T.  If we drive a 
stick into the ground, the shadow cast by the 
Sun at R at sunrise, and the shadow cast by 
the Sun at T at sunset, will form an angle, 
and not lie in a straight line.  But that is not what we observe.  The opposite in fact occurs; in 
the oblique sphere, on the day of an equinox, the shadow sweeps out 180° during the day (so 
it starts and ends in the same straight line, though pointing in opposite directions).  In the 
right sphere, on the day of an equinox, the shadow stays in one straight line all day (the sun 
goes directly overhead, just as the celestial equator does there). 
 
PROBLEMS WITH [C] 
 
 
Alternative [C] was to put the Earth both off the axis and closer to one celestial pole than the 
other. 
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This idea has all the problems of [A] and [B] together, and so it must also be rejected. 
 
An added problem concerns lunar eclipses.  Imagine the celestial sphere as a giant 
basketball, spinning about the axis NS.  The equator is a great circle at right angles to NS, 
and so if we drew that on the basketball, it would appear to sit still, rotating in place.  But the 
ecliptic, as we saw, although it is a great circle, must be tilted on the surface of the spinning 
sphere, since by creeping on it the Sun is sometimes north of the equator, sometimes south of 
it—which is confirmed by our initial exercises in observing the location of sunsets on our 
horizon throughout the year.  The ecliptic then, would appear to be “wobbling” on our 
basketball, not just spinning in place or within itself like the equator. 
 This means that if the earth rests somewhere off center, then there would be only one 
position of the ecliptic which would ever pass through the earth, and so only there could a 
lunar eclipse occur.  That would mean there could be a lunar eclipse only in two signs, 
namely in the one the moon is in (in the accompanying figure), and also in the one the sun is 
in (if the moon and sun switch places).  But that is contrary to the facts:  lunar eclipses can 
occur throughout the zodiac. 
 In the false figure drawn here, lunar eclipses could also occur at places like Q & R, 
but then the Sun and moon would not be 6 signs apart during such an eclipse, which again is 
contrary to the observed facts. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There you have it.  If the Earth is thought of as sitting still, and we therefore attribute all the 
apparent motions of the stars to the stars themselves, then the appearances force us to admit 
that the fixed stars move spherically (and then the most natural reason for this would be that 
they are all fixed in a single, solid, common sphere), and also that we are at the center of the 
celestial sphere. 
 Notice that one reason Ptolemy did NOT give for saying we are at the center of the 
universe is “because we humans are the most important thing in the universe”.  Far from it.  
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He thought the heavens were somehow divine, and we were mere mortals.  Plato and 
Aristotle thought that the heavens were living and intelligent beings, moving themselves, and 
that they were immortal.  Aristotle thought they had always existed, had never come to be, 
and would always be, and they were made of indestructible materials quite unlike anything 
on Earth.  These ideas are very foreign to us (and incorrect), but they were reasonable to 
some extent given the idea that the heavens were spinning all by themselves and in perfectly 
circular patterns.  At any rate, to suppose that the Earth itself is spinning once a day is really 
the alternative, and that is a fairly counter-intuitive idea, as we shall see.  Most of the 
ancients could not stomach that idea.  But they did not place us humans in the middle 
because they thought we were so important.  On the contrary, most ancient thinkers 
considered the center of the universe the “cosmic dump” for heavy and corruptible bodies, as 
opposed to the divine and celestial bodies above and in control of everything down here. 
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PTOLEMY 
 

DAY 4 
 
 

REMAINING BASICS OF THE GEOCENTRIC MODEL 
 
 
 
 
PROPOSITION 4:  THE EARTH HAS THE RATIO OF A POINT TO THE HEAVENS 
 
 
In Chapter 6 of Book 1 of his Almagest, Ptolemy proves that the earth has “sensibly” the 
ratio of a point to its distance from the sphere of fixed stars. 
 “Sensibly” means there is no appreciable difference between the actual ratio of the 
earth to the heavens and the ratio that a point would have to the heavens.  There is no 
difference that has any effect on how things appear to us. 
 His arguments for this conclusion are as follows: 
 
 
 
 
[1]  If earth had significant size relative to the sphere of fixed 
stars, the star S would appear brighter to the observer at A 
than to the observer at B, since AS < BS.  Also, the angular 
distance between stars S and R would appear different to 
observers at A and B, since angle 1 is less than angle 2.  But 
such differences are not observed.  So it cannot be that the 
Earth has any detectable size compared to the heavens. 
 
 
 
 
 
 
[2]  If we measure time with a sundial or take observations of 
angles with armillary spheres on the assumption that our 
instruments are at the center of the heavens (although in fact we 
are in fact distant from it by the radius of the earth), we don’t run 
into problems.  So the radius of the earth must be an insignificant 
distance away from the center of the heavens. 
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[3]  If earth had significant size, our horizons would never cut the celestial sphere in half, as 
they in fact always do. 
 
 
SCHOLIUM ON THE VISIBILITY OF POLARIS FROM THE EQUATOR 
 
Polaris is not exactly at the North Celestial Pole, but makes a little circle 
around it.  Still, even if it were right on that Pole, it would be visible from 
anywhere on Earth’s equator, as a star right on the horizon (as long as one 
could get a view out to the true horizon).  Why?  If I am standing on Earth at 
E, on the equator, my horizon being EH, tangent to the earth at E where I 
stand, any line below that horizon, such as EK, would have to cut the 
spherical Earth, and hence block my view.  To see Polaris, then, that star 
would have to bulge a bit above my horizon.  But then it seems like it would 
not bulge above the horizon for someone on Earth’s equator, but standing on 
the opposite side of the earth, or nearly on the opposite side.  And yet he 
could also see it just on his horizon.  How is that possible? 
 

 
 
 
Since Polaris is so far away, yet visible, it must be much bigger 
than the earth.  Hence the portion cut off by earth is so slight, you 
can still see practically half the star above your horizon, even if the 
star is exactly centered on the North Celestial Pole.  Even in the 
accompanying figure, the size of Earth is greatly exaggerated in 
comparison to Polaris, and the size of Polaris is greatly exaggerated 
in comparison to the distance separating Polaris and Earth. 
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PROPOSITION 5:  THE EARTH IS AT REST 
 
In Chapter 7 of Book 1 of his Almagest, Ptolemy argues against the idea that the Earth could 
in any way be in motion, for instance, that it might be doing the daily spinning instead of the 
heavens, or that it might be annually creeping about through space rather than the Sun.  Since 
this idea is false, his arguments for it will clearly not be decisive.  And yet it will be 
instructive in each case to consider precisely where they go wrong.  We will return to this 
question more thoroughly when we come to Copernicus.  For now, let’s take a look at some 
of the arguments which Ptolemy musters for the immobility of the Earth: 
 
 
 
ARGUMENT 1.  If the earth moved away from the center, then the same things, contrary to 
the appearances, would follow as in Proposition 3, which showed the impossible 
consequences of placing the Earth off center.  So the Earth cannot move off center.  So it 
cannot move. 
 Note one weakness in this argument:  we have seen that the size of the Earth is 
insensible compared to the distance out to the “fixed” stars.  But what if the size of Earth’s 
orbit around the Sun were also insensible compared to that distance?  Then we could move 
vast distances away from the Sun by terrestrial standards, yet these same distances would be 
negligible or nonexistent by galactic or universal standards!  Then, for all his arguments 
showed before, it might be the Sun which is at rest in the center of the universe, while Earth 
makes a large orbit around it every year.  On that showing, the Sun would appear to creep 
around us on the ecliptic, but then the “ecliptic” would really be a projection of Earth’s orbit 
projected out to the backdrop of the stars. 
 
ARGUMENT 2.  All weights move toward the earth—an indication that it is at the center, 
the bottom of the world.  Where else would heavy things go but “down”?  And we do not see 
anything heavy falling toward the stars, falling “up”.  Hence Earth must be the “downest” 
place in the universe—which puts it in the middle.  And how can it move from there, if it is 
made of heavy stuff that likes to be in the downest of all places? 
 Here the weakness is subtler.  We have all grown up with the idea that Earth is just 
one of many places that has its own “down.”  Things fall “down” on the Moon.  In fact, 
every planet or star has its own “down.”  And each planet is in a sense “falling down” toward 
the Sun.  But these things are far from obvious just from looking outside!  If the Moon is 
heavy, and is “falling down” to Earth all the time, why doesn’t it smash into the Earth?  If it 
were heavy, wouldn’t it be heavier than a mountain?  Wouldn’t it come crashing down on 
us?  But it’s been up there for at least thousands of years.  So it is understandable that 
Ptolemy and all others in his time would fail to consider that the Moon might be heavy, and 
that anything in the heavens might be heavy or be a place to which heavy stuff liked to go.  
There is a reason it took an Isaac Newton to see the truth of the matter. 
 
ARGUMENT 3.  This is not so much a separate argument, but more a rebuttal to certain 
objections to Argument 2.  Some people might say “shouldn’t the earth be falling (hence 
moving) to the bottom of the universe?  Otherwise, what’s holding it up?” He replies:  the 
body of the heavens supports it on all sides, and there is no “above” or “below” for the whole 
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universe, anyway, and the earth is itself at the bottom, i.e. the center, where heavy things 
tend. 
 
ARGUMENT 4.  If earth did have a movement down, it would leave behind all other bodies, 
like animals and people and cars, because it is so much heavier, and hence would fall 
much faster than these little things.  Ptolemy concludes “And the animals ... would be left 
hanging in the air.”  “Merely to conceive such things makes them ridiculous,” he concludes. 
 This is a very funny image, but is it true that heavier things fall faster?  Galileo’s 
legendary experiment at the leaning tower of Pisa, whatever the historicity of it, 
demonstrates that heavier things do not fall faster, or at least not so much as we might think.  
Obviously a feather will fall more slowly than a bowling ball, but that is because the feather 
is very bad at dividing the air through which it is falling.  If we remove the unequal wind-
resistance of the feather and bowling ball, say by dropping them both inside a tube from 
which the air has been sucked out, they plummet at the same rate.  Since most of us don’t 
have a way of sucking all the air out of a tall tube, it might be worth mentioning that there is 
another much simpler experiment we can perform to show the same thing.  A book and a 
sheet of paper, dropped from the same height above the floor, take very unequal times to fall.  
The book plummets, while the paper glides or flutters down, significantly slowed in its 
motion by the resistance of the air.  But now place the paper on top of the book (use a piece 
of paper small enough so no bit of it hangs over the edge of the book), and drop the book.  
Does the book “leave the paper behind, because it is so much heavier than the paper”?  Not 
at all.  The paper sticks right to the book and follows it all the way down! 
 
 
[5]  As for those who say the earth spins on its axis (note some people already thought that 
back then!), Ptolemy says that this idea might fit with the appearances of the stars, and even 
be a “simpler” explanation (since you are making just the Earth move, not all the stars and 
planets), but nevertheless it flies in the face of other things. 
 (a)  To say the earth spins, and not the heavens, means the really heavy bodies, all 
down here, have a swift motion, while the light bodies, which stay up there or go up there (as 
fire does), are perfectly still and don’t move.  Ptolemy and most thinkers in his day thought 
the heavens must be made of weightless materials—if they were heavy, wouldn’t they fall 
down here to earth?  But they don’t.  They just “stay up there.”  So they must not have any 
weight.  To make weightless things move around in a circle really fast seems more 
reasonable than to make the extremely heavy, clumsy, cumbersome earth move around in a 
circle really fast, i.e. one giant rotation per day. 
 (b)  The earth’s motion would be very swift indeed (around 1000 mph in fact, at its 
equator).  So there should be a 1000 mph wind in the same direction all the time, i.e. contrary 
to the spin of the earth, i.e. a constant wind from the East (because earth is spinning toward 
the East).  So all clouds should move westward all the time.  And anything on wheels (like 
cars in neutral or shopping carts) should be rolling westward all the time. 
 Do these arguments prove Ptolemy right?  They have a certain plausibility to them.  
But (a) requires us to believe that the heavenly bodies have no weight.  Although they “stay 
up there” and don’t “fall down here” (at least they don’t crash into us), there could be other 
explanations for this.  Ptolemy is assuming that the “heaviness” of a body is not affected by 
its distance from the center of the earth—no matter how far away it is, it will still fall toward 
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the center of the earth, and at the same rate.  How does he know this?  Couldn’t it be that 
each celestial body has its own “down,” namely toward its center, and bodies in their vicinity 
have weight toward them, and not toward other heavenly bodies, or not as much? 
 And (b) requires us to assume that the air around the earth (our atmosphere), and the 
various objects standing on the earth, would not themselves share in the spinning motion of 
the earth.  But Ptolemy addresses that next: 
 
 
[6]  If our opponents say the air is also carried around with the motion of the earth, says 
Ptolemy, then other problems arise.  Presumably, my body shares in the motion of the earth 
only because I am in contact with it, or because it is shoving me along somehow.  But then 
why doesn’t the earth move 1000 mph under my feet whenever I jump up in the air?  And 
why don’t we feel this rapid motion of ours?  Why don’t we feel the earth moving?  When 
we put objects on a spinning Lazy Susan or a potter’s wheel or any rapidly spinning thing, 
they fly off in all directions, don’t they?  So why don’t we fly off the earth if it is spinning so 
quickly? 
 This last is perhaps the strongest argument in favor of Ptolemy’s view that the earth 
is at rest (and hence the heavens, not us, are moving, and so we are at the center of the 
universe, or thereabouts).  If the earth is moving, if it is both spinning on its axis and flying 
around the sun at enormous speeds, these fantastic motions are for some reason impossible 
for us to feel by ordinary experience.  And anyone who says the earth has such motions will 
be obliged to explain why we don’t feel them. 
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SCHOLIUM ON SCIENTIFIC REASONING AND MODEL-MAKING 
 
Soon after giving all these arguments for the basic ingredients of his geocentric model of the 
universe, in Chapter 8 of Book 1 of his Almagest, Ptolemy says: 
 

It will be sufficient for these hypotheses, which have to be assumed for the 
detailed expositions following them, to have been outlined here in such a 
summary way, since they will finally be established and confirmed by the 
agreement of the consequent proofs with the appearances. 

 
There are a number of significant points in this sentence. 
 (1)  First, Ptolemy is acknowledging the inherent weaknesses in the foregoing 
arguments.  He has not really proved that the Earth sits still, that the heavens move and do so 
on a sphere, that the Earth is at the center of the universe.  Almost all he has established with 
any real decisiveness is that the Earth is sensibly spherical and that it has the ratio of a mere 
point to the heavens. 
 (2)  Second, Ptolemy is acknowledging the need to adopt some “hypothesis,” some 
model or other, at the beginning, prior to having adequate proof of its correspondence to 
reality.  This is necessary because the final “proof” of the model will come from showing 
how a more detailed version of it can be made to match up beautifully with and “explain” all 
the specific details of our observations with quantitative exactness.  But we cannot develop 
or even understand that more detailed version of the model without adopting a general notion 
of the model first. 
 (3)  Third, Ptolemy here seems to be endorsing a certain philosophy of science.  He 
seems to be arguing that, while many models can be made up at the beginning which match 
the observations in a general way, only a true model will be able to match the observations in 
all their quantitative specificity.  It is like saying that many theories of the crime can match 
the facts of the case in general, but only the true explanation of the crime can match all of the 
facts exactly, in all their particularity and detail.  It is not so clear that Ptolemy really thinks 
this, however, since, as we shall see, he will himself propose alternate models of the same 
particular phenomena which produce the same appearances, and he will make no attempt to 
decide which one is the “truth.”  But it is a question worth considering. 
 Is it true that only the true explanation of a set of observable facts can account for 
them all?  Or is it ever possible, given a certain set of facts, to explain them in quite different 
ways?  Is that always possible? 
 Since this is our first stab at this question, let’s keep things simple—almost childishly 
simple—by examining this piece of reasoning: 
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•  If Ptolemy’s model corresponded correctly with reality, then X, Y, and Z would be 
observed (X, Y, and Z are quantitative consequences of the model which should fall 
within the realm of what we can observe, for instance one might be that “Venus never gets 
more than Q degrees away from the Sun”). 

 •  But  X, Y, and Z are observed. 
 •  THEREFORE  Ptolemy’s model corresponds correctly with reality.  
 
Does that conclusion really follow?  It does not.  In form, it is logically the same as this piece 
of reasoning: 
 
 •  If you were in a refrigerator right now, you would feel cold. 
 •  But you do feel cold. 
 •  THEREFORE  You are in a refrigerator right now. 
 
Even if both premises are true, the conclusion might still be false.  So it does not follow 
logically from the premises.  This way of reasoning (or misreasoning) is called “the fallacy 
of affirming the consequent.” 
 It is a fallacy, however, only insofar as it is meant to be a necessary argument or 
“syllogism.”  But what if we multiply arguments of this type, and what if the “consequents” 
are things very peculiar and precise, and things which were predicted for the first time 
because someone thought up the theory developed in the “If” part of the first premise?  Then 
the “if” part, which contains some theory or model or hypothesis, starts to look very likely 
indeed.  Imagine a murder investigation is going on, and the theory of the crime, T, specifies 
who did it, for what motive, when, where, and by what means.  That theory leads to certain 
consequences: 
 
 If T is true, then Jones’s DNA will be found under the victim’s nails. 
 But Jones’s DNA is found under the victim’s nails. 
 
 If T is true, then Jones’s wife must have been unfaithful. 
 But Jones’s wife has been unfaithful. 
 
 If T is true, then Jones must not have been seen at the conference he was attending 

during 4 and 6 pm. 
 Jones was not seen there during 4 and 6 pm. 
 
 If T is true, then Jones must own a cannibal’s brain-pick. 
 But Jones does own a cannibal’s brain-pick. 
 
And so on.  If we multiply enough checkable consequences like these, and all of them check 
out, and if the consequences are in some cases quite surprising and unusual, and if they 
follow necessarily and readily from T, the theory of the crime, then while none of these 
arguments definitively proves T, taken together they present a very compelling case for the 
truth of theory T.  One might say that T, while not demonstrated with logical necessity, has 
been established “beyond all reasonable doubt.” 
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 Even then, however, we sometimes find we wrongly convict people.  And something 
similar happens in science from time to time.  We will return to this over-arching question 
now and then, especially once we arrive at Copernicus and Kepler.  
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PTOLEMY 
 

  DAY 5 
 
 

TWO PRIME MOVEMENTS IN THE HEAVENS 
 
 
 
In Chapter 8 of Book 1 of his Almagest, Ptolemy introduces two more principles or 
assumptions, namely the two chief movements of the heavens. 
 
THE FIRST MOVEMENT. 
 
“One is that by which everything moves from East to West, always in the same way and at 
the same speed, with revolutions in circles parallel to each other and clearly described about 
the poles of the regularly revolving sphere,” says Ptolemy. 
 This is the “daily” movement of the celestial sphere, and of all things in it.  For 
example, the Sun partakes of this motion, and rises and sets with a motion that is more or 
less the same as the daily motion of the other stars.  It is the same as theirs in that it takes 
almost the same time (about 24 hours), and in that it is about the same poles (the North and 
South celestial poles). 
 
Ptolemy continues:  “Of these circles the greatest is called the equator, because it alone is 
always cut exactly in half by the horizon which is a great circle of the sphere, and because 
everywhere the sun’s revolution about it is sensibly equinoctial.” 
 What is he saying here? 
 As we saw before, a 
“Great Circle” is a circle on a 
sphere, the center of which circle 
is also the center of the sphere.  It 
is called “great” because that is 
the largest circle you can describe 
on the sphere.  The EQUATOR is 
one of the great circles on the 
celestial sphere (in which all the 
fixed stars are fixed), and it is the 
only great circle which lies 
parallel with the E-W motion of 
the heavens. 
 It is called the Equator 
because it is the only circle (in 
which things move in the daily 
motion) that is always cut in half 
by the horizon, regardless of 
where you live.  If you live at the 
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earth’s equator, directly beneath the celestial one, then ALL those parallel circles are cut in 
half by your horizon.  But no matter where you live on Earth, your horizon bisects the 
celestial equator (if you live at the North or South pole, your horizon coincide with the 
celestial equator).  In the accompanying diagram, you can see that the celestial equator is 
bisected by the horizon of someone standing neither at the pole nor on the earth’s equator, 
but somewhere between.  But any other circle traced by the daily rotation of the sphere, for 
instance the path of the Sun on a particular day, will not be bisected by your horizon (unless 
your horizon happens to pass through the North and South celestial poles, because you live at 
the equator). 
 Another reason he gives for calling this circle the Equator:  “because everywhere the 
sun’s revolution about it is sensibly equinoctial.” 
 What does this mean?  That when the sun is on the Equator (which happens twice a 
year, once on its climb North, once in its descent South), its path for that day coincides with 
the location of the celestial equator in your sky, and so its path is bisected by the horizon no 
matter where you live, and hence you get equal amounts of daylight and darkness on that 
day. 
 
 
 
 
THE SECOND MOVEMENT. 
 
Ptolemy now goes on to describe the second principal movement in the heavens:  “The other 
is that according to which the spheres of the stars make certain local motions in the direction 
opposite to that of the movement just described, and around other poles than those of that 
first revolution.” 
 The first motion, the “daily” motion, is of the celestial sphere itself, and it is about 
the North and South celestial poles, and it takes about 24 hours to complete a rotation.  This 
second motion Ptolemy describes is primarily associated with the more particular spheres on 
which the Sun, the Moon, and the Planets revolve.  He imagines the universe is entirely 
contained within the Sphere of Fixed Stars, or the Celestial Sphere (or “the sphere of the 
heaven”), but inside that all-containing sphere are other spheres, some nested within others, 
on which the Sun, Moon, and Planets ride about with motions peculiar to themselves.  
Moreover, these peculiar motions of the Sun, Moon, and Planets, are rotations which are not 
about the North and South celestial poles, but about other poles. 
 What observations make him say there is a second movement, contrary to the first, 
which the Sun, Moon, and Planets follow?  This takes us back to the exercises of Day 1.  
Exercises 3 through 6, and the Phenomena associated with them, are the observations which 
prompted Ptolemy to posit another movement for the Sun in addition to its share in the daily 
rotation of the celestial sphere. 
 Let’s refresh our memories a bit. 
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OBSERVATION 1.  (A few nights) 
 
A given fixed star sets about 3 minutes, 55.91 seconds earlier each night (this is regular year 
round).  So one “sidereal day” (i.e. the time it takes a star to go around the earth) is shorter 
than a 24 hour day by that much, i.e. one sidereal day = 23h 56m 4.09 seconds. 
 
Watch some constellation setting 1 hour after 
sunset just where the sun set.  It will differ 
throughout the year. 
 
 
The setting place of a star is basically the 
same every night (or during the day, if that’s 
when it is in the sky for us).  Ignoring the 
precession of the equinoxes (more on this later), the celestial pole never budges in the sky, 
and stars are fixed in their positions relative to the celestial poles, and so they rise and set in 
fixed places on the horizon.  (Earth’s orbit about the sun is too small to make any difference 
in where the stars appear to set, and earth’s axis remains parallel to itself with only a slight 
swivel which is completed once every 25,000 years.) 
 
OBSERVATION 2.  (A few days) 
 
The sun gets behind the stars in varying amounts (behind because the stars are setting almost 
4 minutes earlier than 24 hours from their last setting, whereas the sun’s time from sunset to 
sunset is an average of 24 hours) each day, and so it creeps eastward through the sphere of 
fixed stars, tracing out a full circle in them in one year, called the “ecliptic.”  (The moon and 
planets travel roughly along that same circle, i.e. roughly in one plane around the sun; the 
“ecliptic” is either where the sun appears from our point of view in the stars, or the 
projection of the plane of earth’s orbit.)  We have already discussed that, while we cannot 
“see” where the Sun is among the stars simply by looking at the stars around the Sun (since 
the Sun’s light, when it is not being eclipsed by the Moon, makes the stars impossible to 
see), we can see which stars rise as the sun sets, and, by checking our star charts, see which 
fixed stars the Sun must be in. 
 
 
 
 
 
 
 
 
 
 
OBSERVATION 3.  (Preferably a few years) 
 

H

Just after sunset
On night 1

Night 2 Night 3

SUNSETSS N



 34 

In September, where I live (at about 35° North latitude), 
 the sun sets further South each evening 
& the sun sets about 3 minutes earlier each evening (but this varies throughout the year, 
i.e. whether it is setting earlier or later, and by how much). 
 
 
 This means that if we tried to insist that the Sun is just moving about the N and S 
celestial poles, we would have to say it is “jumping” more and more north, and back again, 
more and more south, “changing lanes” on the celestial sphere from day to day throughout 
the year.  Very irregular! 
 If, instead, we say that it is creeping slowly along another circle, which is tilted at an 
angle to the celestial equator, we can say it is just moving uniformly along that circle at the 
same time as it partakes of the daily motion. 
 And which way is it going along that other great circle? 
 The OPPOSITE way of the general daily motion of the stars, i.e. it is going from W 
to E along it.  How do we know?  Because the sun is falling behind the stars a little bit each 
day in motion westward, since the sun takes about 24 hours from sunset to sunset, whereas 
the same star takes a few minutes less than that to go from setting back to setting.  So the star 
is a few minutes ahead of the sun in moving toward the west. 
 
This projection of this circle of the Sun’s backward (eastward) motion, onto the sphere of 
fixed stars, is called the ECLIPTIC.  So the ecliptic is NOT the actual orbit or path of the 
Sun around the Earth, but is the circular line on the sphere of fixed stars to which the Sun’s 
orbit projects from our point of view.  (Ptolemy knew that the Sun was much closer to us 
than the “sphere of fixed stars”.  But we will talk about his understanding of its actual path 
around Earth later.) 
 
 The Moon and other planets also move, roughly, along that path, and in that direction 
(but they have different periods, or times to complete a single orbit around Earth). 
 
 
 
 
 
 
 
 
 How do we 
know that the circle on 
which the sun moves 
backwards, i.e. the 
Ecliptic, is a Great 
Circle? 
 Because if it 
were not, it would not 
be bisected by the 
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celestial equator, and the sun would never be above and below our horizon for equal amounts 
of time, i.e. we would never get an equinox.  But we do.  So it is bisected by the Equator, and 
so it must share the Equator’s center, and be a great circle itself. 
 So there are FOUR POLES in the heavens, now.  There are the North and South 
Celestial poles, which are the poles of the daily motion.  And then there are the North and 
South Ecliptic poles (the N.E.P. or North Ecliptic Pole, and the S.E.P. or South Ecliptic 
Pole), which are the poles of the Sun’s annual motion.  Ptolemy sometimes refers to the great 
circle which passes through those four poles, what we might call the “4-pole circle.” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SOME LINES ON EARTH 
 
 

EQUATOR = the circle on the surface of the earth traced out by the line drawn from earth’s 
center and tracing the celestial equator. 
 
NORTH POLE = the point on earth’s surface through which the line joining earth’s center to 
the celestial north pole passes. 
 
TROPIC OF CANCER = the circle on earth’s surface generated by joining the center of the 
earth to the summer tropic (the sun’s northmost circle in the heavens) and tracing it out.  
Similarly for the Tropic of Capricorn in the south. 
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ARCTIC CIRCLE = the circle on earth’s surface generated by joining the center of the earth 
to the North Ecliptic Pole and tracing out its daily path (and similarly for the Antarctic 
Circle).  It is the first place where you get a 24-hour night in the winter, which happens, in 
principle, for 1 day of the year at the circle itself, and for more days of the year as one goes 
north of it. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 

VOCABULARY 
 

POLE. Point on the celestial sphere that does not move and about which other stars 
move in a circle.  There are 2 poles for each of the 2 prime motions.  The N 
and S poles do not move within the motion of the equator, and the poles of 
the ecliptic do not move with reference to the motion of the ecliptic. 

 
EQUATOR. Great circle on the celestial sphere perpendicular to the straight line (celestial 

axis) joining the North and South poles. 
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HORIZON. Great circle on the celestial sphere perpendicular to you, under your feet (or 
to a line joining your feet to the center of the earth). 

 
MERIDIAN. Great circle on the celestial sphere passing through the North and South 

celestial poles and perpendicular to your horizon (or through the point 
straight over your head).  This is called the “meridian”, from “mid-day”, 
because when the Sun is on your meridian, it is mid-day for you, and the Sun 
is halfway through its path over your horizon for the day. 

 
ZENITH. The point straight over your head, i.e. the midpoint of the 180° of the portion 

of your meridian that is above your horizon.  (Opposite to this is your Nadir, 
the point on the celestial sphere straight below you, on the other side of the 
earth.) 

 
RIGHT SPHERE. 
 

A view of the heavens where the celestial equator is perpendicular to your 
horizon, i.e. straight overhead.  (i.e. a view of the heavens from earth’s 
equator.) 

 
OBLIQUE SPHERE. 
 

A view of the heavens where the celestial equator is oblique to your horizon, 
i.e. not straight overhead.  (i.e. a view of the heavens from anywhere on earth 
other than its equator or poles.) 

 
ECLIPTIC. The path of the sun projected onto the sphere of the fixed stars, which is a 

great circle, completed in an eastward motion of the sun once a year, and 
which has poles of its own, other than the celestial poles. 

 
EQUINOX. One of two days in the year (one in the fall, another in the spring) when every 

place on earth has 12 hours of daylight and 12 hours of darkness (except, in a 
sense, at the poles, where the sun is bisected at the horizon).  Or:  one of two 
points where the ecliptic and equator intersect; equinoxes occur whenever the 
sun is at one of these points in its orbit around us along the ecliptic, so that it 
is both on the ecliptic and also on the celestial equator (exactly so for a 
moment, but roughly so for about a day). 

 
SOLSTICE. A day of the year when every place on earth has either maximum sunlight 

(summer) or minimum sunlight (winter).  Or:  one of two points on the 
ecliptic furthest from the equator; solstices occur whenever the sun is at one 
of these points. 

 
TROPIC. One of the two points on the ecliptic furthest from the equator (another word 

for a solstice point). 
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ZODIAC. Band of 12 constellations along the ecliptic spanning about 8° above and 8° 
below it. 
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PTOLEMY 
 

DAY 6 
 
 
THE SEXAGESIMAL SYSTEM AND THE NEED FOR A TABLE OF CHORDS AND 

ARCS 
 
 
 
Before getting into any of the detailed versions of Ptolemy’s models for the motions of the 
Sun and the planets, we need to understand some of his mathematical equipment.  To begin 
with, we need to understand a little bit about his numerical system, and also his need for 
developing a “table of chords and arcs,” which will enable him to find the sizes of lengths 
and sides in triangles after being given some of the sizes of the other lengths and sides.  We 
will not bother learning how to multiply, divide, and find square roots in Ptolemy’s 
sexagesimal system.  That is too much work with too little return, given what we have to do 
in the course.  But it is important to understand what the sexagesimal system is, in order to 
understand Ptolemy’s numbers, and it is useful to be able to turn his numbers into decimal 
form and our decimal expressions into sexagesimal ones. 
 
 
 

DECIMAL SYSTEM. 
 

 
Ptolemy does not use the decimal system to which we are accustomed, but the much more 
tedious sexagesimal system.  Copernicus and Kepler and Newton also use it to some extent.  
And it remains in use today, in many applications. 
 What do we need to know about this system? 
 (a)  It is important to know how to read sexagesimal values, and to be able to 
translate a sexagesimal value to a decimal one and vice versa, in order to understand 
Ptolemy’s tables and calculations, at least as he presents them. 
 (b)  It is good to know how to add and subtract them (which is just a matter of 
knowing how to simplify, and how to borrow). 
 (c)  It is not important (in my humble opinion) to know how to find square roots in 
the sexagesimal system, or how to multiply or divide with them.  This is tedious, 
uninteresting, and life is hard enough without it.  Simply convert to decimal, do the 
calculation there, and convert back to sexagesimal. 
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We are accustomed to using the decimal system of numbers.  This means not only that we have 10 
basic numerical symbols (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), but also that we signify numbers by making them 
sums of powers of ten.  For example: 
 
 
356 = (3 × 102) +  (5 × 101) +  (6 × 100). 
 
 
Notice that the place of the digit indicates which power of ten we are multiplying.  And if we need to 
designate fractions of a unit, we do so by cutting it up into equal parts in numbers which are also 
powers of ten, and then the place of the digit again indicates which power of ten that digit is to be 
multiplied by: 
 
.238 = (2 × 10-1)  +  (3 × 10-2)  +  (8 × 10-3) 
 
Or, putting it a bit differently, 
 
 
“3.1415” means   
 
and generally 
 
“a.bcde ...” means 
 
 

SEXAGESIMAL SYSTEM. 
 

 This way of representing numbers uses 60 as a base instead of 10.  Instead of saying how 
many tenths (or hundredths etc.) we have, we say how many sixtieths (or thirty-six-hundredths etc.) 
we have. 
 And usually we only take things to the second sexagesimal place after the whole number, i.e. 
to the 3600ths place.  The whole number place is signified by a superscript of whatever unit we are 
using (e.g. H for Hours, or ° for Degrees) and the “firsts” place by one superscript minute-mark, and 
the “seconds” place by two superscript minute-marks, thus: 
 
 37H  14’  53’’ 
 
which would be read “37 Hours, 14 Minutes, 53 Seconds.” 
 If we are dividing arcs of a circle, or angles, then we write: 
 
 37°  14’  53’’ 
 
which we read “37 degrees, 14 arc-minutes, 53 arc-seconds.” 
 We still divide time sexagesimally, i.e. we divide 1 hour not into “10 minutes” but into “60 
minutes”, and one minute not into “10 seconds” but into “60 seconds” (3600ths of an hour). 
 
So generally 
 
a   b’   c’’   d’’’ ... means 
 
 

4321 10
5

10
1

10
4

10
13 ++++

4321 101010101
edcba

++++

4321 606060601
edcba

++++
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FROM SEXAGESIMAL TO DECIMAL 
 
 
To convert from sexagesimal to decimal is easy: 
 
24°  31’  12’’    =     24 + 31/60 + 12/3600     =     24.52° 
 
 
 
 

FROM DECIMAL TO SEXAGESIMAL 
 
 
This is more painful, but still not too bad.  Suppose you want to translate the decimal expression 
35.398° into sexagesimal form. 
 
 35.398   = 35 + 398/1000 
 
Now we want to turn that fraction into a fraction over 3600 (if we are going to take it out only to the 
“seconds” place).  So we multiply 398 by 3.6 (since that is what we want to multiply the denominator 
by), giving us 1432.8, which we can round up to 1433.  Now we have 
 
 35.398  = 35 + 1433/3600 
 
But just as every 60 seconds is a minute, so too every 60 of our 3600ths is a “first” or “minute” in 
sexagesimal notation.  So how many 60s are there in 1433? 
 
 1433 ÷ 60 = 23.88333... 
 
So there are basically 23 sixties in there.  But 23 × 60 = 1380, and 
 
 1433 – 1380 = 53 
 
leaving us with 
 
 35.398   = 35 + 23/60 + 53/3600 
 
i.e. 35.398  = 35°  23’  53’’ 
 
 

EXERCISES 
 
Turn the following decimal expressions into “hours, minutes, seconds” : 
 
 23.468  hours 
 5.203  hours 
 14.777  hours 
 
 



 42 

THE NEED FOR A TABLE OF CHORDS AND ARCS 
(In other words:  The Need for Trigonometry) 
 
 
 
In Chapter 10 of Book 1 of his Almagest, Ptolemy begins preparing the mathematical 
equipment he will need in order to develop the detailed versions of his models of solar, lunar, 
and planetary motions.  He has already outlined the whole universe, but coarsely, with no 
numerical values.  We don’t have any sense of the proportions of things, or the speeds of 
things, and so on.  Remember, the universe, according to Ptolemy, consists of nested spheres 
of various sizes moving in various ways.  What are the sizes of those spheres?  What is the 
order of them?  Is the Sun closer to us, or Venus?  How many spheres are responsible for all 
the movements we see in the planet Venus?  We want a mathematically crisp picture of all 
this.  And we cannot get that without the help of trigonometry and a table of chords and arcs. 
 Ptolemy is very brief in explaining how a table of chords and arcs (which 
corresponds closely to, but is not identical to, a modern table of sines or cosines) is useful for 
this end.  It might be worth understanding this better before jumping into the details of 
deriving such a table, especially for those not familiar with the usefulness of trigonometry. 
 
 The general reason we need such a table is to enable us to solve triangles.  A table of 
chords and arcs will take arcs of a circle of varying lengths (e.g. 1°, 2°, 3°, etc.) and say how 
long the chords are subtending each of these arcs (compared, say, to the diameter of the 
circle), and hence also, conversely, it will give us chords in the circle of varying lengths, and 
tell us how big an arc it cuts off or subtends. 
 Such a table (as we will see) will enable us to “solve triangles.”  That is, given 
sufficient numerical information about certain sides and angles in a triangle, we will be able 
to say what the values are for all the remaining angles and sides.  Hence “trigonometry” or 
“triangle-measurement.” 
 And why do we want to be able to “solve triangles”?  To be able to solve triangles is 
extremely useful in countless ways, not only in pure and exact mathematics, but also in order 
to get very accurate values for things we cannot measure directly. 
 Let’s see how that can be so. 
 
 
 
 
 
 
 
 
 
 
EXAMPLE 1:  ASTRONOMICAL EXAMPLE WITH A RIGHT 
TRIANGLE. 
 We want to know the shape of the universe, e.g. the ratios of the 
various orbits of the planets around the sun (to keep it simple, let’s be 

VS

E
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Copernican for now, and assume the orbits are all perfect circles with the sun right at the 
center of all). 
 We’ll start with trying to find the ratio of Venus’s orbit to our own.  ES is the radius 
of our orbit, and VS is the radius of Venus’s orbit. 
 How can we find the relative sizes of these two orbital circles?  We cannot measure 
their radii directly! 
 In fact, we pretty much NEVER OBSERVE DISTANCES directly in astronomy, 
but only angles.  This fact alone is a major reason why we need a way of translating 
angles into corresponding lengths in the sides of triangles. 
 We orbit S, the Sun, and our orbital radius is ES. 
 Venus, or V, orbits S, too. 
 Since Venus’s orbit is inside ours, Venus will never seem to get further from S than 
by some angle SEV, where EV is tangent to the orbit of Venus.  So when V is as far away 
from the Sun as it can get, i.e. when ∠SEV is as large as it ever gets, a “greatest elongation” 
of Venus is taking place, and then we know EV (our line of sight to the planet) is tangent to 
the orbit, and hence we know that ∠EVS is 90°.  But we can also measure ∠SEV by direct 
observation.  Hence all the angles of rSEV are known in degrees.  Hence all the ratios of 
the sides are determined—there is no flexibility there. 
 If we had a way of knowing, from these three angles, what the ratios of the sides 
must be, we could quantify the ratio SE : SV, which would be the ratio of the orbital radii of 
Earth and Venus.  To do that, however, we need a way to solve triangles, and a way to 
associate certain angles with certain lengths of sides in triangles. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
EXAMPLE 2:  ASTRONOMICAL EXAMPLE WITH A 
NON-RIGHT TRIANGLE. 
 Suppose we want to find the ratio of Mars’s orbit to 
our own. 
 We orbit S, the Sun, going from B to A. 
 Mars, or M, orbits S, too. 
 In the present example, suppose Earth is first at A, 
exactly between the Sun and Mars, so that SAM is a straight 
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line (and Mars is rising exactly as the Sun is setting).  We observe Mars against the star α  in 
the zodiac. 
 Suppose we also know that Mars moves at a uniform rate on its circular orbit, and so 
we know exactly how long it will take Mars to come around again to position M, so at a 
certain time we will know that  SMα  are again in a straight line.  We note the passage of 
time starting from when we observe Mars at M (when we are at A); when the time required 
for Mars to get back to the very same spot on its orbit (its “period”) has elapsed, we know 
that Mars is back at M. 
 
 Hence we know Mars is really back at M, even though we are now at B in our orbit, 
and it does not look to us, from our new vantage point, like Mars is back in the same spot we 
saw it in before.  Now Mars looks to us as though it is superimposed on star  β  in the zodiac. 
 And since our orbit (not just our planet!) is as a point to the heavens, therefore  Bα  is 
pretty much exactly parallel to  Aα , 
 
hence  ∠βBα  =  ∠βMα 
but  ∠βBα   is simply observed and measured 
so  ∠βMα  is now known in degrees. 
 
Thus  ∠BMA  is now known in degrees, 
(since it is equal to  ∠βMα,  since they are vertical angles). 
Or, in other words,  ∠BMS  is known in degrees. 
 
But  ∠SBM  is also known in degrees, since we know that star  γ  is rising just as 
the Sun is setting, so that  SBγ  is a straight line, and we can measure the angle  γBM  
directly (with some instrument like a set of graduated circles, or something more 
sophisticated like a sextant).  But this angle is the supplement of  ∠SBM.  Hence  ∠SBM  is 
known in degrees. 
 
So now all the angles in rSBM are known. 
Can we, now, assign numerical values to the 
ratios of the sides of that triangle?  Suppose we 
called  SB,  the radius of Earth’s orbit,  “1”.  
Then what would we have to call  SM,  the 
radius of Mars’s orbit?  The triangle SBM is 
entirely decided in shape.  If only we had a way 
to solve for its other sides, given a numerical 
value for one of the sides and given all the 
angles!  Hence the need for a table which will 
enable us to say how big a side subtends a given 
angle in a triangle, or how big an angle subtends 
a given side in a triangle. 
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NOTE ON THE EXACTNESS OF TRIGONOMETRY. 
Trigonometry is sometimes mistakenly thought to be an inexact, good-enough system.  That 
is not so.  It is perfectly exact and mathematically rigorous, in itself.  But we often use its 
laws to determine values for sides or angles only to a given degree of precision, due to 
limitations (say) in the precision of our original values, since they resulted from physical 
measurement, or else due to limitations to our own ability to carry out calculations to infinite 
decimal (or sexagesimal) places. 
 
 
Very well, then, our next business will be to develop the fundamentals of trigonometry.  This 
will consist in building up a “Table of Chords and Arcs,” which corresponds to a modern 
table of Sines and Cosines (as we shall see later).  Imagine a circle of center O, with diameter 
ROD.  Now suppose I laid off a chord inside the circle, CD, and told you exactly how big it 
was compared to the diameter, say one third the length of the 
diameter.  Could you tell me how big the angle DOC is in degrees?  
You can if you have a table of chords and arcs!  Again, suppose I 
did the reverse, and told you exactly how big the angle DOC is in 
degrees—say it is 34.592°.  Can you tell me how long the chord CD 
must be in terms of the diameter?  You can if you have a table of 
chords and arcs!  And you can see that if we can answer questions 
like this about the triangle DOC, we will be well on our way to 
being able to calculate the values for all the sides and angles of any 
triangles, given sufficient information about them. 
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PTOLEMY 
 

DAY 7 
 
 

BUILDING A TABLE OF CHORDS AND ARCS:  PART 1 
 
 
 

(1)  WHY 360 AND 120? 
Ptolemy divides his standard circle’s diameter, DR, into 120 parts, in 
keeping with his sexagesimal ways—this way the radius of the circle is 
60 of those 120th-parts of the diameter, and each of those is called a 
“part of the diameter’s 120”.  And he divides the arc of the circle (and 
hence the angles subtending them at the center of the circle) into 360 
equal arcs, each one called a “degree.” 
 As cumbersome as this is for us, there were some advantages to 
this for Ptolemy, who did not have decimal calculators at his disposal. 
 (a)  For one thing, 120 = 5! = 1×2×3×4×5, so 120 has lots of integral factors.  360 is 
triple that, so it also has lots of factors.  This makes for more whole numbers of degrees 
when we cut the circumference of the circle into some whole number of parts; e.g. “half a 
circle,” “a third of a circle,” “a quarter of a circle,” “a fifth of a circle,” will all have whole 
number degree-values, as will a tenth, a twelfth, a fifteenth, and so on. 
 (b)  360 : 120 = 3 : 1, a rough approximation of pi.  In other words, one “degree” of 
arc is almost equal to one “part” of the diameter. 
 (c)  With this system, the equilateral triangle on the radius has 3 angles of 60° and 3 
sides of 60 parts.  That’s rather pretty. 
 (d)  There are 365 days in a year; so now we have the Sun moving about 1° a day on 
its circle (just a little less, as we shall see). 
 
 
 
 

(2)  CHORDS ARE NOT AS ARCS. 
To see the need for this table of chords and arcs, we need to see that chords do not have the 
same ratios as the arcs they subtend.  We easily fall into the mistake of thinking that any two 
chords in this circle will have to each other the same ratio as the arcs of the circle they cut 
off.  If you are tempted to think this, banish it from your thought!  It is not true.  And it is 
easy to forget that this is not true, even for some veterans of trigonometry.  One must burn 
this annoying fact into memory.  If chords were as arcs, then it would be much easier to build 
up the Table!  For instance, since the chord of 180° is 120 parts, it would follow that the 
chord of 90° must be 60 parts, and so on proportionally. 
 Alas, it is not so.  A very quick proof of this:  Draw a square inscribed in our circle.  
Obviously the chord of 90° is the side of that square, and the chord of 180°, the diameter, is 
the diagonal.  But the diagonal is not double the side, even though the arc is double the arc. 
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 Or draw a regular HEXAGON in a circle, letting AB, BC, CD be three consecutive 
sides.  Then AD is the diameter of the circle, and is double AB.  But the arc AD (i.e. ABCD) 
is not double the arc AB, but triple it! 
 Again,  
 
 
If  ∠ACM = ∠BCM, 
and so arc AM = arc MB 
so  arc AM = ½ arc AMB 
is  chord AM = ½ chord AB  ? 
 
No.  AE = ½ AB 
and  AM > AE (hypotenuse) 
 
 
 
 
 
 

(3)  PLAN FOR BUILDING THE TABLE: 
  
So we must find other inroads into filling out the entries on our table. 
 Plan of attack: 
 
[1]  FIND CHORDS OF 36° & 72°. 
 = items (4) – (5) below. 
 
[2]  FIND CHORDS OF 60°, 90°, 120° 
   and note that the chord of the supplement to an angle whose chord is given, is given. 
 = item (6). 
 
[3]  FIND CHORDS OF 144°, 108°. 
 = item (7). 
 
[4]  PROVE THAT CHORDS OF ARCS WHICH ARE “DIFFERENCES OF ARCS WITH GIVEN 
CHORDS” ARE GIVEN. 
 = items (8) – (9) 
 
[5]  PROVE THAT CHORDS OF ARCS WHICH ARE “HALVES OF ARCS WITH GIVEN 
CHORDS” ARE GIVEN. 
 = item (10) 
 
[6]  PROVE THAT CHORDS OF ARCS WHICH ARE “SUMS OF ARCS WITH GIVEN 
CHORDS” ARE GIVEN. 
 = item (12) 
 
[7]  FIND CHORDS OF 1° AND 1½ °. 
 = items (13) – (15) 
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[8]  INTERPOLATION OF “SIXTIETHS” 
 = item (16) 
 
[9]  RELATION OF TABLE OF CHORDS TO TABLE OF SINES 
 = item (17) 
 
 
 
NOTE: 
 36°, 72°, 60°, 90°  are all found directly. 
 120°, 144°, 108°  are found as supplements. 
 12° is found by “subtraction”, i.e. by [4] above. 
 6°, 3°, 1½°, ¾°  are found by “bisection”, i.e. by [5] above. 
 All multiples of 1½° are found by “addition”, i.e. by [6] above. 
 1° and ½° are found by approximation. 
 
 
We will cover Steps [1] through [6] today, i.e. items (4) through (12), and we will cover 
Steps [7] through [9], i.e. items (13) through (17), in Day 8. 
 
 
 
 

(4)  PRELIMINARY TO FINDING THE CHORDS OF 36° & 72°. 
 
First, Ptolemy shows that if we have a circle 
of diameter ADC, perpendicular radius DB, 
and bisect radius DC at E, and join EB, and 
draw a circle with center E, radius EB, cutting 
radius DA at F, and join FB, then  
 
FB = side of regular inscribed pentagon 
FD = side of regular inscribed decagon 
 
He uses Euclid’s Elements, Book 13 
Proposition 10, for this. 
 
So now we know that FB is the chord of 72°, 
and FD is the chord of 36°.  This does not 
give us a numerical value for them yet, in terms of the 120 parts of diameter AC, but it will 
enable us to do that in the next step. 
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(5)  FINDING THE CHORDS OF 36° & 72°. 
 
 
Now let’s find numerical values, as precise as we like, for the 
chords of 36° and 72°: 
 
 
 AC = 120   [given] 
so ED = ¼ AC = 30 
and DB = ½ AC = 60 
 
so BE =  
 
so EF = BE = 67.08203932... 
so FD = EF – ED  =  67.08203932... – 30  =  37.08203932... 
i.e. Chord 36°  =  37.08203932... 
 
 
 
so FD2 = 1375.07764... 
but DB2 = 3600 
so BF2 = FD2 + DB2 = 1375.07764... + 3600 = 4975.07764... 
so BF = 70.53423027... 
so Chord 72°  =  70.53423027... 
 
NOTES: 
 (a)  These are decimal values, but are easily translated into sexagesimal values 
matching those on Ptolemy’s Table. 
 (b)  Ptolemy speaks of “getting” or “finding” chords, or of chords being “given.”  
What he means is to find a way of determining a numerical value for their lengths, in units of 
one-hundred-twentieth parts of the diameter, to any desired degree of precision.  We do this 
by beginning with chords whose exact values are known for geometrical reasons, then by 
showing how the sought chord is the result of a known operation on the known chords. 
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(6)  FINDING THE CHORDS OF 60°, 90°, 120°. 
 
 
 
 Chord 60°  =  Radius  =  60 
 
 
so BC2 = 2DC2 = 2 × 3600 = 7200 
so BC = 84.85281374... 
so Chord 90° = 84.85281374... 
 
 
(NOTE:  I will stop putting the ellipsis in (...) just for simplicity.  I will just truncate the 
expressions at an arbitrary place.) 
 
 
 
 
If we now let ∠ADT = 120°, so that ∠CDT must be 60°, we know: 
 
 AT2 = AC2 – CT2 = 1202 – 602 = 14400 – 3600 = 10800 
so AT = √10800 = 103.9230458 
so Chord 120° = 103.9230458 
 
 
 
 
NOTE:  WE CAN FIND CHORDS OF SUPPLEMENTS.  We can now find the chord for 
any angle which is the supplement of an angle whose chord is known.  In the example above, 
we knew CT, the chord of 60°, and we knew AC, the diameter.  That, together with the 
Pythagorean Theorem, was all we needed in order to compute AT, the chord of the 
supplement of 60°.  There was nothing special about 120° and 60°.  So now, if we know the 
chord of any angle, we will also be able to compute the value of the chord of its supplement. 
 
 

(7)  FINDING THE CHORDS OF 144° & 108°. 
 So using the very same technique, we can find the chords of 144° and 108°, since 
these are the supplements of 36° and 72° respectively, and the chords of those arcs are 
known. 
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(8)  LEMMA (FOR THE UPCOMING PROOF THAT CHORDS OF ARCS WHICH ARE 
“DIFFERENCES OF ARCS WITH GIVEN CHORDS” ARE GIVEN). 
 
This may be called the “Diagonal Cross-Product Theorem.” 
 
The Theorem states that if ABCD is a cyclic quadrilateral (i.e. a 
quadrilateral inscribed in a circle), then 
 
AC·BD = AB·CD + BC·AD 
 
or, put verbally:  The rectangle contained by the diagonals is 
equal to the sums of the rectangles contained by the pairs of 
opposite sides. 
 
Again, since this is just a matter of going through the steps, we 
will assume it is true and use it, but not bother proving it together. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(9)  PROOF THAT CHORDS OF ARCS WHICH ARE “DIFFERENCES OF ARCS WITH 
GIVEN CHORDS” ARE GIVEN (i.e. calculable). 

 
Given:  arcs AB & AC in degrees; chords AB & AC in 120th parts of diameter AD 
Prove:  chord BC is also given in 120th parts of AD (i.e. can be calculated) 

 
 
Since  AB & AD are given, thus BD is given [Euclid 1.47] 
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Since  AC & AD are given, thus CD is given [1.47] 
 
But  AC·BD = AB·CD + BC·AD [by the cross-product Lemma] 
and all terms in that equation are given except for BC. 
Hence BC is also given. 
 

Q.E.D. 
 
NOTE:  We are not just thinking of AC.BD (for example) as a rectangle, but 
as a product of two numbers.  There’s plenty of philosophically discussible 
matter there. 
 
 
 
 
 
EXAMPLE of the use of this Theorem for our Table: 
 
If  arc AC = 72° 
and  arc AB = 60° 
then  arc BC = 12°.  And since the chords of 72° and 60° are already given, it 
follows by this Theorem that the chord of 12° is also given now, or calculable to any degree 
of accuracy we please. 
 
 
 
 
 
 
 
 
 
 
 
 

(10)  PROOF THAT CHORDS OF ARCS WHICH ARE “HALVES OF ARCS WITH GIVEN 
CHORDS” ARE GIVEN. 

 
 Ptolemy next shows that if we know the chord of a known arc, then we can also 
calculate the value of the chord of half that arc.  That will help fill in a whole lot of entries on 
the table! 
 If we know arc CB in degrees (and its midpoint is D), 
and chord CB in 120th parts of diameter AC, then we will also 
be able to calculate the value of chord CD in those units. 
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Given:  arc CB in degrees 
  chord CB in 120th parts of the diameter AC 
  arc BD = arc DC 
 
Prove:  CD is given 
  (i.e. the chord of half the given arc CB) 
 
Make:  AE = AB 
  DF perpendicular to AC 
 
 
 AB = AE 
 AD common 
 ∠BAD = ∠EAD  [Euclid 3.27; they stand on equal arcs] 
so rBAD ≅ rEAD 
so BD = DE 
i.e. CD = DE 
so rDEF ≅ rFCD 
so CF = EF 
i.e. CF = ½ EC 
so CF = ½ [AC – AE] 
 CF = ½ [AC – AB] 
so CF is given   [since AC is given, AB is supplement of given] 
 
Now AC : CD = CD : CF [rADC similar to rDCF; 6.8] 
so AC·CF = CD2 
so CD2 is given  [AC & CF are given] 
so CD is given 
 

Q.E.D. 
 
 
EXAMPLES: 
 Since we had the chord of 12°, 
 now we have the chords of 6°, 3°, 1½ °, ¾ ° 
 

(11) ARCS WHOSE CHORDS ARE NOW GIVEN: 
 
Direct Geometry:     Supplements: 
 36° (side of decagon)   144° = 180° – 36° 
 60° (radius, side of hexagon)  120° = 180° – 60° 
 72° (side of pentagon)   108° = 180° – 72° 
 90° (side of square)     
 180° (diameter)      
  
__________________ 
 
Subtraction:     Supplements: 
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 24° = 60 – 36     174° = 180 – 6 
 12° = 72 – 60     168° = 180 – 12 
 18° = 90 – 72     162° = 180 – 18 
 30° = 90 – 60     156° = 180 – 24  
 54° = 90 – 36     150° = 180 – 30  
 48° = 108 – 60     132° = 180 – 48  
 84° = 120 – 36     126° = 180 – 54  
 6° = 18 – 12     96° = 180 – 84  
 
__________________ 
 
 
Bisection:      Supplements: 
 42° = 84 ÷ 2     138° = 180 – 42  
 66° = 132 ÷ 2     114° = 180 – 66  
 78° = 156 ÷ 2     102° = 180 – 78 
 
 Now we have all multiples of 6° 
 
__________________ 
 
 
Bisection:      Supplements: 
 3° = 6 ÷ 2     177° = 180 – 3 
 9° = 18 ÷ 2     171° = 180 – 9 
 15° = 30 ÷ 2     165° = 180 – 15 
 21° = 42 ÷ 2     159° = 180 – 21 
 27° = 54 ÷ 2     153° = 180 – 27 
 33° = 66 ÷ 2     147° = 180 – 33 
 39° = 78 ÷ 2     141° = 180 – 39 
 45° = 90 ÷ 2     135° = 180 – 45 
 51° = 102 ÷ 2     129° = 180 – 51 
 57° = 114 ÷ 2     123° = 180 – 57 
 63° = 126 ÷ 2     117° = 180 – 63 
 69° = 138 ÷ 2     111° = 180 – 69 
 75° = 150 ÷ 2     105° = 180 – 75 
 81° = 162 ÷ 2     99° = 180 – 81 
 87° = 174 ÷ 2     93° = 180 – 87 
 
 Now we have all multiples of 3°, and by Bisection: 
 1½ ° = 3 ÷ 2 
 
 

(12)  CHORDS OF ARCS WHICH ARE SUMS OF ARCS WITH GIVEN CHORDS ARE GIVEN 
(this is like “addition”) 
 
Ptolemy adds this Theorem that will help to fill in new entries on our Table: 
 
 

Given: Arcs AB and BC are given in degrees 
 Chords AB and BC are given in diameter-parts 
 

Prove: AC is also given in diameter-parts 
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Make: Diameters BFE and AFD 
 
 CE is given    [supplement of BC] 
 BD is given    [supplement of AB] 
 DE is given    [supplement of BD] 
 
But BD·CE = BC·DE + CD·BE  [quadr. multiplication Lemma, item (11) above] 
 
so CD is given    [all other terms given in there] 
so AC is given    [supplement of CD] 
 
Q.E.D. 
 
APPLICATION: 
 We can add 1½ ° to itself thus, getting 1 out of every 3 terms on the table.  Now we have 
 1½ °  3°  4½ °  6°  etc. 
 
 
NOTE:  The use of “given” here means can be calculated to whatever degree of accuracy 
you please, e.g. to as many decimal or sexagesimal places you want.  Sometimes we need 
numerical exercises to get the gist of this.  For instance, we have seen that 
 
 Chord 36°  =  37.08203932... 
and Chord 1½ °  =  1.570833333... 
 
so now, using this Theorem, see if you can determine the numerical value for Chord 37½ ° . 
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PTOLEMY 
 

DAY 8 
 
 

BUILDING A TABLE OF CHORDS AND ARCS: PART 2 
 
 
It remains for us to find the chords of 1° and of ½°, which, together with all our other 
techniques, and with a method (described near the end of today’s discussion) for 
interpolating good values for arcs less than ½°, will give us a fairly complete table of chords 
and arcs. 
 
 

(13)  PRELIMINARIES TO FINDING THE CHORDS OF  1°  &  ½° . 
 (a)  It is not possible to trisect an angle of 60° (or to construct the arc of 20°) using 
only circles and straight lines and Euclid’s postulates for plane geometry.  (That 
impossibility is strictly provable, but we will not get into this here.) 
 (b)  Therefore we have no simple geometrical construction to give us calculation-
insight into the chord for 20°.  That is why it is still missing from our table. 
 (c)  But 21° is already on our Table (see Day 7). 
 (d)  Since we can use simple geometry to get the chord for 21°, but not for 20°, we 
also cannot use simple geometry to get the chord for 1°, since this is their difference, and we 
know how to find the chords of arcs which are differences of arcs with known chords.  (See 
Day 7.) 
 (e)  And since we can’t use simple geometric techniques to get the chord of 1°, 
neither can we use them to get the chord of ½°, since if we could get ½° we could also get 
the chord of its double, 1°, since we know how to find the chords of arcs which are sums of 
arcs with known chords.  (See Day 7.) 
 (f)  But we really need the chords of 1° and ½°!  The Table will be woefully 
incomplete without these and all the other increments of these which are still missing (like 
11°, 13°, 17°, and all others which differ by 1° from those already on the Table). 
 (g)  So we need a special way of approaching these, some way of getting a very good 
APPROXIMATION.  This is the one place where Ptolemy does not enable us to calculate to 
an arbitrary degree of precision.  Still, he will get us almost to the nearest 3600th of a 120th 
part of a diameter, which is more than good enough for naked-eye astronomy, and is as far 
out as he takes the other entries on the table anyway, i.e. to the third sexagesimal place.  
(Note:  More recent developments in trigonometry enable us to determine the chord of 1°, or 
the chord of any given arc, to any degree of precision.  But we are interested in the 
beginnings of things right now, so we will follow Ptolemy’s way.) 
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(14)  LEMMA:  Greater Chord : Lesser Chord < Greater Arc : Lesser Arc. 
 In order to get a good value for the chords of 1° and ½°, Ptolemy first gives us a 
perfectly rigorous mathematical demonstration, showing that: 
 If    arc BC  >  arc AB 
 then BC : AB  <  arc BC : arc AB 
So not only is it the case that “unequal arcs are NOT as their chords,” we can now specify 
that the greater chord has a lesser ratio to the lesser one than the corresponding arc has to the 
corresponding arc. 
 The proof is a little challenging, but here it is: 
 
 

GREATER CHORD : LESSER CHORD  <  GREATER ARC : LESSER ARC 
 
 

Given: arc BC > arc AB  [hence BC > AB] 
 

Prove: BC : AB < arc BC : arc AB 
 

Make: DB bisect ∠ABC 
 DF perpendicular to AC 
 ED = DH = DG 
 
Now  CD = AD  [arc AD = arc DC, by bisection] 
and  CE > AE  [CE : AE = CB : BA, Euc. 6.3] 
and  DE > DF  [∠DFE is right, so DE is hypot in △DEF] 
and  AD > DE  [∠DEA obtuse] 
so  G is on AD and H is beyond DF. 
 
thus  Sector DEH > rDEG [whole > part] 
and  rDEA > Sector DEG [whole > part] 
 
so  rDEF : rDEA < rDEF : Sect DEG1 
so  rDEF : rDEA < Sect DEH : Sect DEG2 
 
so  EF : AE < ∠FDE : ∠EDA3 
so  EF + AE : AE < ∠FDE + ∠EDA : ∠EDA4 
i.e.  AF : AE < ∠FDA : ∠EDA 
so  2AF : AE < 2∠FDA : ∠EDA 
i.e.  AC : AE < ∠CDA : ∠EDA 
so  AC – AE : AE < ∠CDA – ∠EDA : ∠EDA5 

                                       
1 Since the same has a lesser ratio to the greater of 2 magnitudes, Euc. 5.8. 
2 Since Sect DEH is greater than rDEF, which just makes it worse, i.e. makes the ratio on the right still larger. 
3 The first ratio is the same as that of the triangles, by Euc. 6.1, while the second is the same as the Sectors, by 
Euc. 6.33. 
4 “Componendo,” Euc. 5.18. 
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i.e.  CE : AE < ∠CDB : ∠BDA 
so  BC : AB < arc BC : arc AB6 
 
Q.E.D. 
 
NOTE:  It is not necessary for AC to be a diameter, but DF has to be one. 
 
 
 
 

(15)  FINDING THE CHORDS OF 1°  &   ½ ° . 
 
By our earlier techniques, we were able to get the value of Chord for 3°. 
Thus, by our “bisection” theorem, we also have the value of Chord for 1½°. 
Thus, by our “bisection” theorem, we also have the value of Chord for ¾ °. 
 
In the exaggerated accompanying diagram, 
 
 arc AB = ¾ ° 
 arc AC = 1° = 4/4° = arc AB + ¼ ° = arc AB + ⅓ arc AB = 1⅓ arc AB 
 
Now AC : AB < arc AC : arc AB  [By the previous Lemma] 
so AC : AB < 1⅓ arc AB : arc AB 
so AC < 1⅓ AB    [since 1⅓ AB : AB = 1⅓ arc AB : arc AB] 
so AC < 1⅓ of (0P 47’ 8’’)  [Chord of ¾°, to our degree of precision] 
so AC < 1P 2’ 50’’ 
so Chord of 1° < 1P 2’ 50’’  [This is actually true] 
 
 
Again, let 
 
 arc AB = 1° 
 arc AC = 1½ ° = 1½ arc AB 
 
Now AC : AB < arc AC : arc AB  [Lemma] 
so AC : AB < 1½ arc AB : arc AB 
so AC < 1½ AB    [since 1½ AB : AB = 1½ arc AB : arc AB] 
i.e. 1P 34’ 15’’ < 1½ AB   [Chord of 1½°, to our precision] 
so 1P 2’ 50’’ < AB   [taking ⅔ of each side] 
i.e. 1P 2’ 50’’ < Chord of 1° (7) 
 

                                                                                                                  
5 “Separando,” Euc. 5.17. 
6 Euc. 6.33 again. 
7 This is strictly false, but would be true if the chord of 1 ½ ° were EXACTLY equal to 1P 34’ 15’’; thus 
this conclusion is no more false than our approximation of the chord of 1 ½°, which means it is good 
enough an approximation for us. 
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So 1P 2’ 50’’ < Chord of 1° < 1P 2’ 50’’ 
i.e. Chord of 1° = 1P 2’ 50’’  [i.e. good approximation] 
 
 
NOTE: 
 By the chord-of-half-the-arc theorem, chord of ½° is given now, too. 
 By the addition theorem, every chord of multiples of ½° is given, too. 
 So the whole table is now complete. 
 
 
 
 

(16)  “INTERPOLATION” and the “SIXTIETHS COLUMN”. 
 
 
The table of chords so far contains only ½° intervals. 
What if we need to find the chord of 22⅔° ? 
 
Ptolemy gives us a technique for finding the value of the chord of any arc which is in a 
whole number of minutes, or “sixtieths” of a degree. 
 
Now ⅔ is equal to 40/60, so that is a whole number of minutes (note again the convenience 
of using 60; almost any ordinary fraction of a degree will be a whole number of sixtieths of 
it).  Here is what we do: 
 
We find the chords on our table between which the chord of 22⅔° must lie, namely the 
chords of 22½° and 23°.  Since there are 30 minutes (i.e. ½°) of arc between these arcs, there 
are 30 different chords for each of those minutes added to the 22½°.  Since ½° is fairly small, 
we assume that these progressive chords increase (roughly, but close enough for our 
purposes) by the same increment.  Hence we take the difference of the chords for 22½° and 
23°, and divide this difference into 30 equal parts.  Then, for every number of additional 
minutes beyond 22½°, we add one of these increments to the chord of 22½°, and get a 
reasonably precise value for the chord of the corresponding arc. 
 Also, because things are so minutely different over the course of a half a degree, 
Ptolemy carries out the sexagesimal expression one place further, out to the “thirds” column, 
so that the last entry for each “sixtieth” increment is the number of 216000th parts of a 120th-
Part of the diameter (216000 = 3600 × 60). 
 
Here is the example worked out: 
 
Chord 22½ ° =  23  24  39 =  23.4108333 
Chord 23° =  23  55  27 =  23.9241666 
Difference of these chords =    0.5133333 
Difference ÷ 30  =    0.01711111 
    =   1711/100000 
    =   3695.76/216000 
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    =   0 + 3600/216000 + 60/216000 + 35.76/216000 
    =   1’   1’’  36’’’ 
 
which is Ptolemy’s “sixtieth” value for chords after 22½°. 
 
Since we are looking for the chord of 22⅔°, we need to translate the fraction ⅔ into a 
fraction over 30 (since there are 30 increments over the half-degree span).  So we are looking 
for the chord of 22 20/30°.  To do so, we must add to the value of the chord of 22½° twenty 
times the incremental “sixtieth” value we just found.  Hence: 
 
Chord of 22⅔°  =  23  24’  39’’  +  20(1’  1’’ 36’’’) 
   =  23  24’  39’’  +  20’  20’’  720’’’ 
   =  23  24’  39’’  +  20’  20’’  12(60’’’) 
   =  23  24’  39’’  +  20’  32’’  0’’’ 
   =  23  44’  71’’ 
   =  23  45’  11’’ 
 
 
ILLUSTRATION: 
 
 
If arc AB = 15° 
and arc AC = 15½° 
then arc BC = ½° = 30’ (here grossly exaggerated in the picture) 
 
If we make a circle around A with radius AB and cut off AD from AC, 
then DC is the difference between the two successive chords. 
Chop it into 30 equal parts, and each of those is an increment-of-chord-increase 
for “sixtieths” of a degree between 15° and 15½°. 
 
Chop up arc BC into 30 equal parts, and each of those is an arc-minute. 
If arc BE is 15 of those, then AE is the chord of 15¼°. 
 
We approximate AE by adding 15 portions of DC to AB, assuming an 
approximate equality between ME and DZ. 
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NOTE:  Sixtieths shrink as we go through the table.  Why?  Because the difference between 
two successive chords shrinks as we go through the arcs from 0° to 180°, i.e. they grow more 
rapidly at the beginning, and hardly differ at all toward the end. 
 
 
 
 
NOTE:  Since Ptolemy enables us to find a chord for every arc-minute around a semicircle, 
that’s 60 × 180 chords, i.e. 10,800 chords! 
 
 
 
 

(17)  THE RELATION OF PTOLEMY’S TABLE OF CHORDS TO A TABLE OF SINES 
 
 
 
 
 
 
 
 
 
 
 
 
The “sine” of an angle θ is found by placing it at the center of a circle whose radius is called 
“1”, and dropping from the end of one radial leg a perpendicular to the other radial leg.  The 
length of that perpendicular is obviously decided by the size of the angle, and it is called the 
“sine” of that angle, or “ sin θ ”. 
 Since lines from the center of a circle drawn perpendicular to any line inside the 
circle will bisect it, plainly if we just double the sine of θ, we get the chord of  2θ , 
 
i.e. 2 sin θ  = Chord of 2θ 
 
But there is a difference of units to consider.  When expressing the length of the “sine”, by 
convention the radius = 1, but by Ptolemy’s convention, radius = 60. 
 
So 60 ·2 sin θ  = Chord of 2θ 
 
i.e. sin θ  = (Chord of 2θ) ÷ 120 
 
and Chord Z  = 120 sin (½ Z) 
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Sine of

Z
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θ

θ
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EXAMPLE: 
 
Chord 1° = 120 sin ½°  (if our formula is right) 
Chord 1° = 1.04718426  (found by calculator) 
Chord 1° = 1P 2’ 49.86’’ 
 
So Ptolemy’s table is accurate to within one arc second! 
Still, the truth is that 
 
Chord 1° < 1P 2’ 50’’ 
 
but not by much.  This resolution goes way beyond what the eye can distinguish in the 
heavens; even 8-inch telescopes are limited to about 4 arc seconds of resolution on a good 
night. 
 
 

(18)  SOLVING TRIANGLES. 
 
The whole point of the Table was to enable us to solve triangles, given sufficient data about 
them—i.e. given certain sides or angles, to be able to determine all the remaining sides and 
angles. 
 
 
We should now solve some triangles in order to appreciate the power the Table has now 
given us. 
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PROBLEM 1:  “2 SIDES & INCLUDED ANGLE” 
 
GIVEN: rABC 
  AB = 3 
  BC = 4 
  ∠ABC = 71° 
 
FIND:  AC 
 
Drop CP perpendicular to AB. 
Hence the circle on diameter BC, center M, passes 
through P. 
And all angles in rBPC are given (i.e. ∠BCP = 19°). 
So PC is the chord of ∠PMC. 
Now ∠PMC is double 71°, i.e. double ∠PBC (i.e. ∠ABC), since they stand on the same 
chord but one is at the center and the other at the circumference. 
So ∠PMC = 142°. 
So PC is the chord of 142°. 
So PC is given on our table of chords, but expressed in units where BC = 120. 
 
So when  BC  = 120 
then   PC  =  113  27’  44’’  =  113.46222 
 
Hence when  BC  =  4 
then   PC  =  3.782074   (just maintaining the same ratio) 
 
Since we now know BC and PC, we can solve for PB by the Pythagorean Theorem.  And 
since we already know AB, we can find also the difference, AP.  And since we know PC, we 
can now find AC by the Pythagorean Theorem. 
 
So AC has been found. 
 
(As an exercise, finish the actual calculations, and find the value of AC.) 
 
 
 
 
 
 
 
 
 
 
 
 
 

3

B

M

4

CA

P

71

?



 

 64 

 
 
 
 
PROBLEM 2:  “2 ANGLES & ANY SIDE” 
 
GIVEN: rDEG 
  ∠DEG = 70° 
  ∠EDG = 60° 
  DG = 5 
 
FIND:  EG 
 
 
Drop GR at right angles to DE. 
Hence the circle on diameter DG, center M, will pass through R. 
So RG is the chord of ∠RMG. 
But ∠RMG is double ∠RDG, i.e. ∠RMG = 120°. 
So RG is the chord of 120°, and we can find the value of RG on Ptolemy’s Table, expressed 
in such units that DG is 120. 
 
So when  DG  =  120 
then   RG  =  103  55’  23’’  =  103.923 
 
Hence when  DG  =  5 
then   RG  =  4.330125 
 
Again, the circle on diameter EG, center C, passes through R. 
So RG  is the chord of ∠RCG. 
But ∠RCG is double ∠REG, i.e. ∠RCG = 140°. 
So RG is expressed as the chord of 140° where EG is 120. 
 
So when  EG  =  120 
then   RG  =  112  45’  48’’  =  112.76333 
 
So when  RG  =  4.330125 (which is when DG = 5) 
then   EG  =  4.608014 
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PROBLEM 3:  “2 SIDES & NON-INCLUDED ANGLE” 
 
 
GIVEN: rKHL 
  KL = 11 
  KH = 8 
  ∠KLH = 40° 
  ∠KHL is obtuse 
 
FIND:  HL 
 
It might seem that “2 sides and a non-included 
angle” is insufficient information to determine a 
triangle—but it is almost sufficient.  That is, 
only 2 triangles can have those specifications.  
Consider rHKL, in which ∠KHL is obtuse.  If 
we extend LH and draw a circle around K as 
center with radius KH ( = 8), that circle will 
obviously cut LH produced, and will cut it only 
once, say at N. 
 So rKHL and rKNL are the only 2 
triangles which can have the angle at L equal to 
40°, side LK = 11, and the other side from K = 8. 
 And since ∠KNL must be acute, we have fully specified which triangle we are 
talking about once we say that ∠KHL is obtuse. 
 
To find HL, drop KT at right angles to NH (hence NT = TH). 
Now the circle on diameter KL, center M, passes through T. 
Therefore KT is the chord of ∠KMT, i.e. of double ∠KLH, i.e. KT is the chord of 80°.  
Hence the value of KT is known (from Ptolemy’s table) when KL = 120.  Adjusting 
proportionally, we will know the value of KT when KL = 11 (which is also when KH = 8). 
 
Since we know KH and KT, using the Pythagorean Theorem we can also find HT. 
 
Again, the circle on diameter KH, center Q, passes through T. 
Therefore HT is the chord of ∠HQT. 
But we know the value of HT when KH is 8 (we just found it above). 
Using a proportion, we can find the value of HT when KH is 120. 
At that value, HT will occur on Ptolemy’s Table as the chord of ∠HQT, and therefore we 
now know ∠HQT. 
But ∠HKT is half of that, so we know that angle, too. 
And ∠TKL = 50°. 
So ∠HKL, their difference, is now known. 
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We now know ∠HKL, and we also know the sides about it, KH and KL (which are 8 and 
11).  Hence we can use the technique of Problem 1 above to find HL. 
 
EXERCISE:  Follow through and calculate the actual numerical value of HL. 
 
 
 
 
 
 
 
 
 
 
PROBLEM 4:  “3 SIDES” 
 
 
GIVEN: rXYZ 
  XY = 10 
  XZ = 11 
  YZ = 12 
 
FIND:  ∠XYZ 
 
 
Drop XP at right angles to YZ. 
 
Now  XZ2  =  YZ2  +  XY2  –  2 (ZY.YP)  [Euc. 2.13] 
 
i.e.  112  =  122  +  102  –  2  · 12  · YP 
 
so  121  =  144  +  100  –  24  · YP 
 
so  24  · YP  =  244 – 121 
 
so  YP  =  5.125 
 
But the circle on diameter XY, center M, passes through  P. 
Therefore YP is the chord of ∠PMY where XY = 120. 
But where XY = 120, YP = 61.5. 
Looking up 61.5 on Ptolemy’s Table will give us ∠YMP. 
Half this angle will give us ∠YXP. 
Subtracting ∠YXP from 90° will give us ∠XYZ, which is sought. 
 
EXERCISE:  Follow through and calculate the actual numerical value of ∠XYZ. 
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PTOLEMY 
 

DAY 9 
 
 

ON THE ARC BETWEEN THE TROPICS 
 
 
 
 
In Chapter 12 of Book 1 of his Almagest, Ptolemy gives us 
the first numerically quantified detail in his theory.  We 
have seen that there are two important great circles on the 
celestial sphere, namely the celestial Equator and the 
Ecliptic, corresponding to the first and second primary 
motions in the heavens.  What we are looking for is the 
inclination between these, that is, the greatest circular arc 
intercepted between them.  Suppose we draw the 4-Pole 
circle through the North and South celestial poles (N and S) 
and through the North Ecliptic Pole and the South Ecliptic 
Pole (Q and R).  An arc of this great circle will be cut off 
between the equator and the ecliptic.  Call this arc  AB  (or CD on the other side).  How long 
is this arc?  How many degrees is it?  That is the first numerical detail we will establish in 
the Ptolemaic geocentric model. 
 Ptolemy is actually looking for “the arc between the tropics.”  A “tropic” is a 
“turning point,” a place where the Sun turns back from its climb North or from its drop 
South, and stars going the opposite way.  In the accompanying figure, we must picture the 
whole sphere spinning about the celestial axis, NS, in the direction indicated by the arrow 
drawn on the Equator.  It does that once every 24 hours or so.  At the same time, however, 
we must picture the Sun on the Ecliptic (actually, projected onto it, since its true orbit lies 
well inside the sphere and much closer to the Earth than to the sphere of fixed stars), being 
carried around with this motion, but at the same time crawling in the opposite direction 
along the Ecliptic, in the direction indicated by the arrow on the Ecliptic.  When the Sun is 
up at D, the northernmost point in its trip around the Ecliptic, it will start to come South 
afterward, and so D is a “turning point,” a “tropic.”  So D is the “summer tropic,” because 
for those of us living in the northern hemisphere, that will be the longest day of the year.  
And B, the southernmost point in the Sun’s annual journey, is the “winter tropic,” the 
shortest day of the year for those of us in the northern hemisphere, but the longest for those 
in the southern hemisphere.  Ptolemy is looking for the sum of the two arcs, AB + CD, since 
that is the total amount of arc separating the two tropic points.  That sum, in other words, 
represents the total amount of North-South deviation in the Sun’s annual motion. 
 Ptolemy also takes “the arc between the tropics” to be equal to the length of the arc 
between the poles of the Equator and of the Ecliptic. 
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That is, 
 
 arc AB = arc CD = arc NQ = arc RS 
 
That is obvious just from the fact that NS and QR are 
each at right angles to AC and BD respectively.  
Anyway, what Ptolemy actually observes is:  arc AB + 
arc CD, i.e. the amount of arc between the sun’s 
northernmost and southernmost points along the 
Ecliptic. 
 
 
 
His instrument for doing this is simply a pair of 
concentric and carefully made circles (e.g. made 
of brass) with the circular faces set up in the plane 
of his meridian.  That is, the faces of the circles 
(graduated, with degrees, minutes, and seconds 
marked out on them) are plumb to the horizon, 
and parallel to the North-South line. 
 

C = fixed brass graduated circle in plane of the meridian 
M = circle rotating in plane of meridian; spins about center 
N = center of circles 
P = prism, standing proud for casting a shadow 
R = pointer fixed to the upper prism 

 
The graduated circle has celestial north marked 
out, i.e. the line from N to the point marked 
“North” on the circle points straight at the star 
Polaris.  The equator is also marked out—NQ points to where it cuts the meridian, i.e. NQ 
points right to the celestial equator, and hence the line QN is at right angles to the line from 
N to Polaris.  
 With this simple tool, he can measure the celestial latitudes of heavenly bodies. 
 
 
 
 
 
 
 
 
 
 
When the sun is at his meridian, he moves the inner 
circle until the shadow of the upper prism hits the 
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lower prism, so that PNPR points right at the sun.  The device then registers the sun’s 
latitude.  (It is handy to use shadows to point the pointer right at the Sun, since it is 
dangerous to look right at the Sun.) 
  
If we do this every day (or nearly every day) for a year (or even for several years), we will be 
able to mark out exactly where the sun cuts our meridian on the summer and winter solstices 
(we already know that on the equinoxes it is on the celestial equator, and hence cuts our 
meridian at Q). 
 
A = where summer tropic cuts meridian 
Q = where sun cuts meridian at equinox 
B = where winter tropic cuts meridian 
Z = zenith 
 
Ptolemy finds that arc AB = 47° 40’  (about) 
 
Half of that is about 23½° , which is the inclination of the ecliptic to the celestial equator. 
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PTOLEMY 
 

DAY 10 
 
 
PREPARING TO FIND OTHER ARCS BETWEEN THE ECLIPTIC AND EQUATOR 

 
 
You might have noticed that in Day 9, when we found the arc 
between the tropics, we made no use of our table of chords.  
We simply observed the arc, watching the Sun’s latitude 
throughout the year.  But Ptolemy will next show us how to 
find other arcs intercepted between the ecliptic and equator.  
For example, if E is the place where the ecliptic and equator 
intersect, and arc EC and arc ED are each 90°, then the arc of 
the great circle through C and D will be half the arc between 
the tropics, or about 23½° .  But what if arc EG on the equator 
is something less than 90°, and we draw a great circle through 
the celestial poles and through G, intercepting the ecliptic at 
H?  How great will arc GH be?  Will we be able to tell, if we 
are given arc EG in degrees? 
 We will.  And one can see how this kind of power of getting the values of arcs on a 
great circle given other arc-values on the same sphere could be very useful in astronomy.  
And to do this, we will need to use our table of chords and arcs.  But first we will need to 
develop a little more geometry!  We will need some Lemmas about spherical geometry, and 
in order to prove those, we will need first a few Lemmas concerning plane geometry.  And 
since we will need to “compound ratios” in order to understand these Lemmas, and since 
that mathematical operation is extremely common in Ptolemy (and in Copernicus and in 
Kepler, and also in Apollonius, whose geometry Kepler presupposes to some extent), we will 
have to begin with a refresher on what it means to “compound ratios.”  So here is our agenda 
for today: 
 
(1)  Review what it means to compound ratios. 
(2)  Prove the “Menelaos Theorems” as Lemmas preliminary to the spherical proofs. 
(3)  Prove the “Spherical Menelaos Theorems” as Lemmas preliminary to determining the 
values of certain arcs on the celestial sphere. 
(4)  Apply these Menelaos Theorems to an astronomical problem, namely finding the length 
of the longest day of the year where you live. 
 
We will cover Step (1) today, Step (2) on Day 11, Step (3) on Day 12, and Step (4) on Day 
13. 
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(1)  COMPOUNDING RATIOS. 
 
 
 
Suppose you have two ratios,  ab : bc  &  ef : fd.  There is any number of ways one could 
unite these terms so as to produce a new ratio.  For example: 
 
 ab + ef  :  bc + fd 
 
That is a new ratio, formed out of the terms of the original ratios.  And if one liked, one 
could call this new ratio “the ratio compounded of the original ratios.”  But there is a reason 
we don’t do this.  If you start with two ratios and go through this process, and if I start with 
two ratios that are the same as yours (but perhaps expressed in different numbers), and then I 
go through the same process, then your result and my result might not be the same!  The 
sameness of my starting ratios with yours, and the sameness of the process, does not 
guarantee the sameness of the result, which makes the process not very useful.  For example, 
let the starting ratios be 
 
 1 : 2   &   3 : 4 
 
Then the new ratio, formed by adding the antecedents and adding the consequents, is 
 
 4 : 6 
 
But now suppose we start with the same ratios as before, but this time expressed in different 
numbers, such as 
 
 2 : 4  &  9 : 12 
 
Then the new ratio, formed the same way, will be 
 
 11 : 16 
 
which is certainly not the same as  4 : 6. 
 
 
But there is another way of producing a new ratio from two given ratios which always gives 
the same result, regardless of the terms in which the original ratios are expressed.  Moreover, 
this way of combining ratios (which I am about to describe) is important, because in 
mathematics and in nature there are many interesting truths which involve this way of 
producing new ratios.  Hence this way of producing ratios deserves to be named, and so we 
name it “compounding ratios.” 
 
The definition of “compounding ratios” is this:  Given any two ratios,  a : b  &  c : d,  find 
another pair of ratios the same as these but in which the consequent of the first ratio is the 
same as the antecedent in the second, and then form the ratio of the extremes.  The new ratio 
is said to be the “compound” of the original two ratios. 
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For example, given 
  
 1 : 2   &   3 : 4 
 
we can take two ratios the same as these in which the consequent of the first ratio will be the 
same as the antecedent in the second, like this: 
 
 3 : 6   &   6 : 8 
 
and the ratio  3 : 8  is said to be the “compound” of the original two ratios.  One notation for 
this is as follows: 
 
 3 : 8  ::  (1 : 2)  comp  (3 : 4) 
 
or 3 : 8  =  (1 : 2)  c  (3 : 4) 
 
Notice that the compound ratio is the same regardless of the numbers in which the original 
two ratios are expressed.  We could express them thus: 
 
 2 : 4  &  9 : 12 
 
and if we go through the process again, compounding these ratios, we can still use 
 
 3 : 6   &   6 : 8 
 
and thus get  3 : 8  as the compound ratio.  Or, if we like, we can use 
 
 18 : 36  &  36 : 48 
 
so that the compound result is  18 : 48,  which, simplifying, is the same ratio as  3 : 8. 
 
If we are dealing with integers, then there is an easy, always-works method for forming the 
compound ratio.  All we have to do is take the ratio of the product of the original antecedents 
to the product of the original consequents.  For example, given 
 
 4 : 5  &  2 : 3 
 
the compound ratio must be  (4 × 2)  :  (5 × 3).  The reason for this is that we can get the 
consequent of the first ratio to be the same as the antecedent of the second (which is the key 
step to compounding) by multiplying the terms of the first ratio by 2 and the terms of the 
second ratio by 5, giving us 
 
 8 : 10  &  10 : 15 
 
But this means the new extremes will be  4 × 2  and  5 × 3,  and hence their ratio will be the 
“compound” of the original ratios, by the definition. 
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From this, one can begin to see why people say that “compounding ratios is the equivalent of 
multiplying fractions.”  If the fractions are ratios of integers, then the new fraction resulting 
from multiplying the original two will be the same as the compound ratio.  For example: 
 
 
 
 
 
and  (4 : 5)  c  (2 : 3)  =  8 : 15 
 
I say “begin to see” rather than just “see,” however, because it is not clear how to “multiply” 
things such as √2 and √3 (our given ratios might consist of such irrational terms), although 
there is no difficulty compounding ratios with terms such as these.  To multiply √2 by √3, 
one would first have to learn a new definition of “multiplication” besides “taking 2 three 
times and adding them all up” (as one does for 2 × 3), since there is no clear sense to “taking 
√2 the square-root-of-three-times.”  (As it turns out, the way to define the multiplication of 
irrationals will be by completing a proportion among straight lines.  So “compounding 
ratios” is more basic and intelligible in itself than “multiplying fractions,” since one can 
define “compounding ratios” without thinking of “multiplying fractions,” but not the reverse, 
except when the fractions happen to have integral terms.  But this is a digression.) 
 
Note also that it is possible to compound ratios which are not of comparable things.  If the 
original ratios to be compounded are  a : b  &  c : d,  and  a : b  is a ratio of volumes, while  c 
: d  is a ratio of areas, then we can still compound these so long as we can find two other 
ratios, the same as these, in which the terms are comparable.  For instance, suppose we can 
find a pair of straight lines  A : B  which have the same ratio as  a : b,  and we can also find a 
pair of straight lines  C : D  which have the same ratio as  c : d.  Then we can compound  A : 
B  and  C : D  the normal way, and the resulting ratio is the compound of the original ratios  
a : b  and  c : d  as well. 
 
 
There is more than one way to present an image of compounding ratios to make it more 
memorable. 
 
 
One way is by the accompanying diagram. 
 
If our two original ratios are  ab : bc  &  ef : fd,  let  abc  
and  efd  be drawn parallel to one another, and draw any 
third line  L  parallel to them also.  We will use this line  L  
to form the ratio compounded of the two originals. 
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Pick some point P not in line with  abc  and join  pa, pb, pc  and extend these to points  A, B, 
C  on  L.  Clearly  AB : BC  =  ab : bc. 
 
Now join  Be, Cf,  and extend these until they meet at a point,  q.  Join  qd  and extend it till 
it cuts  L  at a point  D.  Clearly  BC : CD  =  ef : fd. 
 
But by the definition of compounding, 
 
 AB : CD  =  (AB : BC) c (BC : CD) 
 
And therefore, by the sameness of these ratios with the originals, 
 
 AB : CD  =  (ab : bc)  c  (ef : fd) 
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Another image which helps to understand the compounding of ratios is as follows.  Suppose 
you have two maps,  Map 1  and  Map 2,  and each one depicts roads in the correct ratios (i.e. 
the same ratios that the roads themselves have in reality), but neither one tells you how much 
real distance an inch on the map represents.  There is no indication of scale, in other words.  
Now you see that 
 
on Map 1  AB : BC  =  3 : 2 
 
which you determine with a ruler, measuring the relative lengths of the roads as depicted on 
that map.  Again 
 
on Map 2  BC : CD  =  12 : 4 
 
Can you conclude, then, that 
 
   AB : CD  =  3 : 4   ? 
 
By no means.  The scales of the maps are clearly different, since one and the same road, road 
BC, is represented as 2 inches on Map 1, but as 12 inches on Map 2.  To adjust for this 
difference of scale, in order to find the ratio of  AB : CD  from the two given ratios, you 
must compound the ratios: 
 
   AB : CD  =  (AB : BC)  c  (BC : CD)  [by def. of compounding] 
 
so   AB : CD  =  (3 : 2)  c  (12 : 4) 
 
so   AB : CD  =  36 : 8 
 
so   AB : CD  =  9 : 2 
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PTOLEMY 
 

DAY 11 
 

PREPARATORY LEMMAS FOR SPHERICAL MENELAOS PROOFS 
 
 
On our way to learning how to determine arcs of great circles on a sphere (given the lengths 
of certain other arcs, or chords, in degrees or in 120th parts of the diameter of the sphere), we 
need several Lemmas.  The first two are called the “Menelaos Theorems,” in which we will 
be compounding ratios. 
 
 
 
 
FIRST LEMMA:  MENELAOS 1. 
 

 
 
 
 
 
 
 

Given:  2 straight lines AB and AC, 
 2 more drawn to them, BE and CD, cutting each other at F. 
 

Prove:  AC : AE = (CD : DF) c (BF : BE) 
 

Draw:  EG parallel to CD. 
 

Well,  AC : AE = CD : EG    [Euc. 6.4] 
 
but  CD : EG = (CD : DF) c (DF : EG)  [def. of compound ratio] 
 
so  AC : AE = (CD : DF) c (DF : EG) 
 
i.e.  AC : AE = (CD : DF) c (BF : BE)  [Euc. 6.4] 
 
Q.E.D. 
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NOTE:  This Lemma, uninspiring as it might seem in itself, is used to prove many interesting 
theorems in geometry, e.g. Desargue’s Theorem, Pascal’s Mystic Hexagon Theorem, and 
many more. 
 The figure (leaving out the auxiliary line EG) is what you might call a “Star Trek 
figure.”  So I call it, anyway.  It can also be called a “Menelaos figure,” but that’s not as fun. 
 This figure includes 4 triangles—2 overlapping big ones, and 2 little ones at the 
bottom.  If you circumscribe a circle around each of these 4 triangles, the 4 circles all pass 
through the same point, P, called the “Miquel Point.” 
 These are all asides, but sometimes it is good to stop and smell the roses. 
 
 
 
 
 
 
 
 
SECOND LEMMA:  MENELAOS 2. 
 

Given:  Same diagram, but with AG parallel to EF 
 
Prove:  CE : AE = (CF : DF) c (BD : AB) 

 
Well,  CF : FG = CE : AE    [Euc. 6.2] 
 
but  CF : FG = (CF : DF) c (DF : FG)  [def. of compound ratio] 
 
so  CE : AE = (CF : DF) c (DF : FG) 
 
i.e.  CE : AE = (CF : DF) c (BD : AB)  [see below] 
 
Q.E.D. 
 
 
How do we know that DF : FG = BD : AB  ? 
 
Well,  DF : BD = GD : DA   [rBDF similar to rGDA] 
so  DF : BD = GD + DF : DA + BD [Euc. 5.18, componendo] 
so  DF : BD = GF : AB 
so  DF : GF = BD : AB   [alternately] 
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THIRD LEMMA: 
 

Given:  Circle, center D, points A, B, C on the circumference, 
 arc AB < 180° 
 arc BC < 180° 
 AC joined, DEB joined 
 

Prove:  AE : CE = chord of  2(arc AB) : chord of  2(arc BC) 
 

Draw:  AF perpendicular to DB 
 CG perpendicular to DB 
 
 
Well,  AF : CG = AE : CE  [Euc. 6.4] 
 
but  AF : CG = chord of 2(arc AB) : chord of 2(arc BC) 
 
so  AE : CE = chord of 2(arc AB) : chord of 2(arc BC) 
 
Q.E.D. 
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Here is a quick preview of the NEXT THREE LEMMAS, before we actually prove them: 
 
 
 
[1]  If arc AC is given in degrees, and the ratio of [the chord of 
2 arc AB] to [the chord of 2 arc BC] is given in numbers, then 
arcs AB and BC are given. 
 
 
 
 
 
 
 
[2]  If arcs AB and AC are each less than 180°, 
CB joined and extended till it meets DA 
produced at E, then  CE : BE = chord [2 arc AC] 
: chord [2 arc AB]. 
 
 
 
 
 
 
 
[3]  If arc BC is given, and the ratio of [the 
chord of 2 arc AC] to [the chord of 2 arc AB] 
is given in numbers, then arc AB is given. 
 
 
 
 
 
NOTE:  The proofs for these work just as well if the arcs are not less than 180°, I believe, but 
Ptolemy specifies that the arcs are less than 180°. 
 
ALSO:  What does Ptolemy mean here by “given”?  When he says that we are “given” a 
chord length, he means we are given (or else able to compute) its numerical value in units of 
the 120th parts of the diameter of the circle it is in.  When he says we are “given” an arc 
length, he means we are given (or else able to compute) its numerical value in degrees, 
minutes, and seconds. 
 
 
 
 
FOURTH LEMMA: 
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Given:  arc AC in degrees 
 ratio of [chord of 2 arc AB] : [chord of 2 arc BC] in numbers 
 

Prove:  arcs AB and BC are given in degrees 
 
 
Well,  ∠ADC is given  [subtends arc AC] 
so  ½ ∠ADC is given 
so  ∠ADF is given   [if we draw DF perpendicular to AC] 
 
but, by our previous theorem, 
 
  AE : CE = [chord of 2 arc AB] : [chord of 2 arc BC] 
 
and the ratio on the right is given, hence it is also given componendo: 
 
  AE + CE : CE = [chd of 2 arc AB] + [chd of 2 arc BC] : [chd of 2 arc BC] 
 
Now  AE + CE is just AC, and AC is given by the Table, because the arc AC is given.  But 
the ratio on the right is given.  Hence CE, the remaining term, is also given. 
 
So  AC – CE given 
i.e.  AE  given 
but  AF  given  (just half of AC) 
so  AE – AF given 
so  EF  given 
but  DF  given  (AF given, AD radius, right rAFD) 
hence  DE  given  (EF & DF given in right rDEF) 
 
So  DF, FE, ED  are all given in terms of the 120th parts of the whole circle of radius AD.  
So we know their ratios.  Hence, now calling DE “120,” we can translate DF & FE into its terms, and 
using our table of chords & arcs, we know ∠EDF. 
 
So  ∠EDF + ∠FDA  is now given 
so  ∠EDA  given 
i.e.  ∠ADB  given 
i.e.  arc AB  given 
so too  arc BC  given  (since arc BC = arc AC – arc AB) 
 
Q.E.D. 
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FIFTH LEMMA: 
 
 
 

Given:  arcs AB and AC each less than 180° 
 join CB, DA, produce to E 
 

Prove:  CE : BE = chord [2 arc AC] : chord [2 arc AB] 
 
 
Well,  CG : BF = CE : BE 
 
but  CG : BF = chord [2 arc AC] : chord [2 arc AB] 
 
so  CE : BE = chord [2 arc AC] : chord [2 arc AB] 
 
Q.E.D. 
 
 
 
 
 
 
 
 
 
 
 
 
 
QUESTION:  What if BC is parallel to DA, so there is no point E at which they meet?  In 
that case, chord [2 arc AC] = chord [2 arc AB], i.e. the chords W and X are equal. 
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SIXTH LEMMA: 
 
 
 
Given:  arc BC in degrees 
  numerical ratio of   chord [2 arc AC] : chord [2 arc AB] 
 
Prove:  arc AB given in degrees 
 
 
Well,  arc BC  given 
so  ∠BDC   given 
so  ½ ∠BDC  given 
so  ∠BDF   given 
 
Also  arc BC  given 
so  BC   given by Table 
so  BF   given  (it’s just ½ BC) 
and  BD   given  (60) 
so  DF   given  (BD & BF given, rBDF is right) 
 
But  CE : BE = chord [2 arc AC] : chord [2 arc AB]  (previous) 
 
But that ratio of chords is given numerically, so it is also given separando 
 
  CE – BE : BE = chd [2 arc AC] – chd [2 arc AB] : chd [2 arc AB] 
 
i.e.  BC : BE = chd [2 arc AC] – chd [2 arc AB] : chd [2 arc AB] 
 
so  BE is given  (since BC is given, and so is the ratio on the right) 
 
So  BE + BF = EF given 
so  ED   given  (EF & FD given, rDEF is right) 
 
So, calling ED “120,” we can translate EF into 120th parts of ED, and therefore ∠EDF is 
known by our table of chords & arcs. 
 
But  ∠BDF   given 
so  ∠EDF – ∠BDF given 
i.e.  ∠ADB   given 
hence  arc AB  given 
 
Q.E.D. 
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PTOLEMY 
 

DAY 12 
 

SPHERICAL MENELAOS PROOFS 
 
 
Next we are ready to prove the Spherical Menalaos Theorems, which are analogous to the 
Menelaos Theorems we proved about plane triangles, except now we are going to be dealing 
with “spherical triangles,” or triangle-like figures on the surfaces of spheres.  This is on our 
way to being able to determine the values of chords in a sphere given certain arcs of great 
circles in degrees, or, conversely, being able to determine the values of circular arcs on the 
surface of a sphere given the lengths of certain chords in 120th parts of the diameter of the 
sphere.  The following material is developed by Ptolemy in Chapter 13 of Book 1 of his 
Almagest. 
 
 
 
 

SPHERICAL MENELAOS PROOF 
 
In the figure we are looking at arcs on the 
surface of a SPHERE, so we are looking at a 
kind of SPHERICAL STAR TREK FIGURE, 
or spherical Menelaos Figure. 
 Let arcs  AB, AC, CD, BE  all be 
portions of great circles on a sphere with center  
G  (imagine G as down below the page, further 
away from you than the spherical surface 
bulging out at you).  What we want to prove is 
that 
 
 
 
 

Chd[2arcCE] : Chd[2arcAE] = Chd[2arcCF] : Chd[2arcDF]  COMP  Chd[2arcBD] : 
Chd[2arcAB] 
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Now, since G is the center of the sphere, we can consider it as the center of the different arcs 
of the great circles, and looking at these one at a time: 
 
 
 
Join GB, GD, GA, AD. 
Produce AD & GB  (so they must meet at some point H). 
 
 
 
 
 
 
 
Join GC, GF, CD. 
So CD & GF must cut, say at K (so K is on DC and on GF). 
 
 
 
 
 
 
 
Join GE, AC. 
So these must cut, say at L (so L is on GE and on AC). 
 
 
 
 
 
Now  H, K, L  are all in the plane of rACD: 
  H is on AD produced, 
  K is on DC 
  L is on AC 
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And  H, K, L  are all in the plane of circle BFE: 
  H is on GB produced, 
  K is on GF 
  L is on GE 
 
 
 
 
 
 
 
Hence H, K, L are all in 2 different planes, and hence they all lie on the one straight line 
which is the common section of those two planes. 
 
Hence we have a Menelaus figure: 
 
 
 
 
 
 
 
 
So  CL : AL  =  (CK : DK)  c  (DH : AH)   [Lemma 2, Day 
11] 
 
 
 
 
 
 
But,  CL : AL = chd[2arcCE] : chd[2arcAE]   [Lemma 4, Day 
11] 
 
 
 
 
 
 
 
 
 
 
and  CK : DK = chd[2arcCF] : chd[2arcDF]  [Lemma 4, Day 11] 
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and  DH : AH = chd[2arcBD] : chd[2arcAB]  [Lemma 5, Day 11] 
 
 
 
 
 
 
 
 
 
So, substituting all those ratios of chords into our proportion: 
 
 

Chd[2arcCE] : Chd[2arcAE] = Chd[2arcCF] : Chd[2arcDF]  COMP  Chd[2arcBD] : Chd[2arcAB] 
 
 
Q.E.D. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The main difficulties here are: 
 (1)  Understanding the 3-D diagram. 
 (2)  Remembering that we are compounding ratios of straight lines, not arcs, since we 
are taking ratios of CHORDS of arcs. 
 (3)  Remember that we are not talking about chords of the arcs themselves, but of 
double those arcs! 
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As for getting the diagram straight: 
 
BG, FKG, ELG each pierce the sphere to its center. 
 
H is above the spherical surface. 
 
The Menelaus figure ADHKCL is a plane that pops out of the sphere along arc ZD, peaking 
at H. 
 
 
LIMITATION TO THE PROOF. 
 
Ptolemy’s argument depends on the Menelaos figure ALCKHD.  But such a figure does not 
necessarily arise just given that AEC, ADB, EFB, DFC are great arcs on a sphere.  For 
example, it could happen that AD and KL are parallel to each other, and then we cannot 
apply the prior Menelaos lemma as he does in his proof.  This should not trouble us too 
much—in all these cases, the theorem still holds good, only the proof is a little different, and 
usually simpler.  If this were a course in pure geometry, we would want to find the simplest 
argument that covers all cases.  But we want this result for the sake of astronomical 
applications.  So onward! 
 
 
THE OTHER SPHERICAL PROOF. 
 
We have just shown that 
 

Chd[2arcCE] : Chd[2arcAE] = Chd[2arcCF] : Chd[2arcDF]  COMP  Chd[2arcBD] : Chd[2arcAB] 
 
Ptolemy notes that by similar methods we can also prove that 
 

Chd[2arcAC] : Chd[2arcAE] = Chd[2arcCD] : Chd[2arcDF]  COMP Chd[2arcBF] : Chd[2arcBE] 
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To see this, we start with the same arcs of great circles on a sphere of center G, but now we 
need a slightly different construction: 
 
Let  GA, CE  meet at  H. 
Let  CF, GD  meet at  L. 
Let  EF, GB  meet at  K. 
 
Now  H  lies in both the plane of circle BAG and the plane of rFEC. 
And   L  lies in both the plane of circle BAG and the plane of rFEC. 
And   K  lies in both the plane of circle BAG and the plane of rFEC. 
 
So  H, L, K  lie in one straight line. 
So  HLKFCE  is a plane Menelaos figure. 
 
Thus CH : EH  =  (CL : FL)  c  (FK : EK)  [Lemma 1, Day 11] 
But CH : EH  =  Chd[2arcAC] : Chd[2arcAE]  [Lemma 5, Day 11] 
And CL :  FL  =  Chd[2arcCD] : Chd[2arcDF]  [Lemma 5, Day 11] 
And FK : EK  =  Chd[2arcBF] : Chd[2arcBE]  [Lemma 5, Day 11] 
 

Thus 
 Chd[2arcAC] : Chd[2arcAE] = Chd[2arcCD] : Chd[2arcDF]  COMP Chd[2arcBF] : 

Chd[2arcBE] 
 
Q.E.D.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NOTE.  This proof suffers from the same limitations as the first proof—but again, that does 
not matter much, since the theorem is true generally, even when the plane Menelaos figure 
cannot be constructed. 
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USEFULNESS.  These will obviously be useful for solving for any one of these chords if all 
of the other chords are known, or at least if the ratios are known.  And if the chord is known, 
then also the arc is known, thanks to our Table of Chords. 
 
BEAUTY.  The spherical Menelaos figure is not exactly analogous to the Star Trek figure, 
since the proportions proved are not about the arcs themselves which constitute the spherical 
Menelaos figure, but there is some surprising analogy, since the proportions among the 
chords follow the same order as the proportions among the sides of the Star Trek figure. 
 That is, if we conceive of a plane Star Trek figure with points AECFBD analogous to 
those in our spherical figure, it is true in the plane figure that 
 
 CE : AE = (CF : DF) c (BD : AB) 
 
and AC : AE = (CD : DF) c (BF : BE) 
 
where the terms are all in the same order as in these spherical proofs. 
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PTOLEMY 
 

DAY 13 
 

 
HOW TO FIND ARCS OF MERIDIAN INTERCEPTED BETWEEN THE ECLIPTIC 

AND EQUATOR GIVEN THE ARC FROM AN EQUINOX. 
 
 
We can now use our Spherical Menelaos Theorems and our Table of Chords to determine the 
values of other arcs intercepted between the ecliptic and the equator at places other than 90° 
from the spring tropic (i.e. the point of intersection of the equator and the ecliptic). 
 
 
For example let arc EG of the ecliptic = 30° 
 

Given:  Ptolemy’s diagram, arc EG = 30° 
  EHA is celestial Equator 

 ABCD is circle through both sets of poles 
 B = winter tropic 
 D = summer tropic 
 E = spring equinox 
 F = south pole 
 arc FGH is the meridian through G 
 

Find:  Arc GH in degrees. 
 
From the second spherical lemma: 
 
 cd2AF : cd2AB = (cd2FH : cd2GH) c (cd2EG : cd2BE) 
 
but arcAF is 90°, arcAB is 23½°, FH is 90°, GH is sought, EG is 30°, BE is 90°. 
 
So, doubling all those known arcs, and looking up their chords on our Table, and placing 
them in the proportion, we have: 
 
 120P : 48P 31’ 55’’ = (120P : cd2GH) c (60P : 120P) 
 
Compounding both sides with the inverse of the last ratio, we have 
 
 (120 : 48 31’ 55’’) c (120 : 60) = 120 : cd2GH 
 
Compounding the two ratios on the left, we have: 
 
 120 · 120 : (48 31’ 55’’)(60) = 120 : cd2GH 
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Then we form the products of the means and of the extremes, and divide by 120 to find the 
cd2GH, and 
 
 cd2GH = 24 15’ 57’’ 
 
Using the Table of chords and arcs (and some interpolation of sixtieths), we find: 
 
 2GH = 23° 19’ 59’’ 
 
so arcGH = 11° 39’ 59.5’’ 
 
Q.E.I. 
 
 
 
RINSE AND REPEAT. 
 Repeating this for other values of arc EG, we can produce a Table of Obliquity, 
which correlates various arcs of the ecliptic (from the spring equinox) with the lengths of the 
arcs of meridian cut off at that place between the ecliptic and the equator.  Ptolemy gives just 
such a table in Chapter 15 of Book 1 of his Almagest. 
 
 We will refer to this table when we come to the material in Almagest Book 2, 
Chapters 1-4, when learning how to determine what the longest day of the year is in a given 
latitude, and similar information peculiar to given locations on earth. 
 
 
 

PTOLEMY’S TABLE OF OBLIQUITY 
 
 
Arcs of the Ecliptic  Intercepted Arcs 
from the Equinox  of the Meridian 
in Degrees   in Degrees, Minutes, Seconds 
 
 
1    0 24 16 
2    0 48 31 
3    1 12 46 
4    1 37 0 
5    2 1 12 
6    2 25 22 
7    2 49 30 
8    3 13 35 
9    3 37 37 
10    4 1 38 
11    4 25 32 
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12    4 49 24 
13    5 13 11 
14    5 36 53 
15    6 0 31 
16    6 24 1 
17    6 47 26 
18    7 10 45 
19    7 33 57 
20    7 57 3 
21    8 20 0 
22    8 42 50 
23    9 5 32 
24    9 28 5 
25    9 50 29 
26    10 12 46 
27    10 34 57 
28    10 56 44 
29    11 18 25 
30    11 39 59 
31    12 1 20 
32    12 22 30 
33    12 43 28 
34    13 4 14 
35    13 24 47 
36    13 45 6 
37    14 5 11 
38    14 25 2 
39    14 44 39 
40    15 4 4 
41    15 23 10 
42    15 42 2 
43    16 0 38 
44    16 18 58 
45    16 37 20 
46    16 54 47 
47    17 12 16 
48    17 29 27 
49    17 46 20 
50    18 2 53 
51    18 19 15 
52    18 35 5 
53    18 50 41 
54    19 5 57 
55    19 20 56 
56    19 35 28 
57    19 49 42 
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58    20 3 31 
59    20 17 4 
60    20 30 9 
61    20 42 58 
62    20 55 24 
63    21 7 21 
64    21 18 58 
65    21 30 11 
66    21 41 0 
67    21 51 25 
68    22 1 25 
69    22 11 11 
70    22 20 11 
71    22 28 57 
72    22 37 17 
73    22 45 11 
74    22 52 39 
75    22 59 41 
76    23 6 17 
77    23 12 27 
78    23 18 11 
79    23 23 28 
80    23 28 16 
81    23 32 30 
82    23 36 35 
83    23 40 2 
84    23 43 2 
85    23 45 34 
86    23 47 39 
87    23 49 16 
88    23 50 25 
89    23 51 6 
90    23 51 20 
 
 
This last value, of course, is half “the arc between the tropics,” which we observed in Day 9.  
There, we said that the arc between the tropics was about 47° 40’.  Half of that would be 23° 
+ 30’ + 20’, or 23° 50’.  Apparently, Ptolemy had a more precise value than that! 
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PTOLEMY 
 

DAY 14 
 

PROPERTIES OF TERRESTRIAL PARALLELS 
 
 
In Chapters 1 through 6 of Book 2 of his Almagest, Ptolemy investigates the properties of 
terrestrial parallels in light of his astronomical model.  Today we will follow some of those 
considerations of his. 
 
 
WHERE WE ARE ON EARTH.  In Chapter 1 of Book 2 of his Almagest, Ptolemy says how 
we can determine which hemisphere we are in, the northern or the southern.  I know that I 
am in the northern hemisphere because I can see Polaris and the constellations near it.  
Another property of the northern hemisphere is that on an equinox, when the sun is on the 
celestial equator, the noon-shadows all fall to the north, i.e. the sun is in the southern half of 
our sky.  (The opposite would be true in the southern hemisphere.) 
 He also says that all the people he has ever heard of live on one half of the Northern 
hemisphere (the world’s population is larger and more broadly distributed today, of course, 
and even in his day there were people in the southern hemisphere, though he had little or no 
knowledge of them).  To argue for this he appeals to events which can be viewed by people 
living very far apart, and which they could know were simultaneous even without having 
nearly-instantaneous telecommunications (like cell phones or email) to talk to each other.  
For example, if an astronomer in the far East is observing the moon while it is being eclipsed 
by the earth on a certain date, he might record the moon’s longitude in his sky at the exact 
moment when earth’s shadow reached the center of the moon, or when it first perfectly 
covers the moon.  Meanwhile, an astronomer in the West would be observing the same thing, 
and those events would be more or less simultaneous for him.  The fact that they can 
simultaneously observe certain events in the sky proves that they themselves live less than 
180° apart in longitude (with the whole known human population in between) on the Earth.  
If the known human population had covered more than 180° of longitude on the Earth, then 
there would be records of total lunar eclipses which were observed by some of those people 
on certain dates whereas others would not have observed them, or would have seen only the 
ending of the eclipse.  As that did not happen, or not among the peoples known to Ptolemy, 
he concluded that they all lived in one half of the northern hemisphere. 
 
This sort of question is not merely a matter of geography for Ptolemy.  In many ways, it is 
the first business of the astronomer, his work closest to home:  to determine the heaven-
observing properties of different locations here on dear old Earth.  Ptolemy will next study 
the astronomically relevant properties of different terrestrial latitudes, namely: 
 a.  The height of the pole above the horizon. 
 b.  The distance of the zenith from the equator on the meridian. 
 c.  Whether the sun ever reaches the zenith, and if so, how often. 
 d.  The noonshadow-to-stick ratio on equinoxes and solstices. 
 e.  The lengths of the longest and shortest days and nights. 
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FIRST STUDY OF DIFFERENT LATITUDES, USING SPHERICAL PROOFS. 
 In Chapters 2 and 3 of Book 2 of his Almagest, Ptolemy considers three different 
pieces of information about a latitude: 
 1.  The arc on the horizon EG, where E is the place that the Equator cuts the horizon 
(always) and G is the place where the winter solstice (on the ecliptic) rises (always).  So the 
sun rises at G on the shortest day of the year. 
 2.  The height of the pole above the horizon (or the depth of the opposite pole beneath 
the horizon), arc BF. 
 3.  The length of the longest/shortest day of the year. 
 
He shows the following things: 
 
 (a)  Given the length of the 
longest day of the year in your 
latitude, you can determine the 
length of arc EG on your horizon (he 
does this in Ch.2). 
 (b)  Given the length of arc 
EG on your horizon, you can 
determine the height of the pole 
where you are (he does this in Ch.3), 
i.e. you can find arc BF or DN.  It 
follows that you can also determine 
these two pieces of information just 
from knowing the length of the 
longest day where you live. 
 (c)  Given the height of the 
pole where you are, you can 
determine the length of the longest 
day of the year, and you can 
determine the length of arc EG on 
your horizon.  (Ch.3). 
 
 
The last is the most interesting, since it allows us, without traveling, to determine the 
properties of latitudes to which we have never been, while sitting in our armchair by the fire. 
 
The place he uses as an example for his data is Rhodes (an island off the southwestern tip of 
Asia Minor, located in the eastern Aegean Sea—it was an important economic center in the 
ancient world).  Let’s go through his examples, and then do an exercise of our own. 
 
   Given:  Length of longest day = 14½ equatorial hours 
 Find:  Arc EG on the horizon 
 
Incidentally, an “equatorial hour” is one twenty-fourth of the equator, or the time it takes 
for one twenty-fourth of its arc to rise above our horizon.  The motion of the sphere of fixed 

N

D

C

A

E

F

B

G

H

Meridian

HORIZON

EQUATOR

L

X

GX = Half the longest night

LG = Half the shortest day



 96 

stars is exactly regular, so far as Ptolemy is concerned, whereas the sun has an additional 
motion besides this daily motion of the heaven, and it in fact speeds up and slows down in 
that additional motion, and because of this irregularity, it is better to define time-units by a 
more regular motion, such as that of the celestial sphere itself.  An equatorial hour differs a 
bit from a solar hour, thanks to the sun’s orbit around us (or our orbit around it).  The 
equatorial hour is a 24th of the time for the sphere of fixed stars to rotate around us once. 
 The first thing he needs, before he can use the Spherical Menelaos Lemma to find arc 
EG, is to determine what 2arcHA is.  (FGH is a celestial meridian, namely the one passing 
through the winter Tropic, G.  Arc HA is the arc of equator cut off by this “tropical 
meridian” when the tropic is on our horizon BE.)  His reasoning depends on seeing that any 
given arc on the celestial equator will take a specific amount of time to pass through our 
meridian. 
 How long will it take 360° to pass through our meridian?  24 equatorial hours. 
 How long will it take 180° to pass through our meridian?  12 equatorial hours. 
 Conversely, 
 How much arc of the equator passes through our meridian in 6 hours?  90°. 
 How much arc of the equator passes through our meridian in 3 hours?  45°. 
 So now we can translate equatorial time into equatorial arcs. 
Now, since the length of the longest day is given as 14 ½ equatorial hours, therefore the 
length of the shortest day is 9 ½ equatorial hours.  Therefore half the length of the shortest 
day is 4 ¾ equatorial hours. 
 
 
And since H goes to A on the meridian in the same time that G goes to L, and G goes to L in 
half the length of the shortest day, therefore H goes to A in 4 ¾ equatorial hours. 
 
Therefore arc HA : 360° = 4 ¾ hours : 24 
hours 
 
Solving for  arc HA  gives us that 
 
  arc HA = 71.25° 
i.e.  arc HA = 71° 15’ 
thus  2 (arc HA) = 142° 30’ 
 
Before we can use the Spherical Menelaos we 
also need to know 2arcFG.  Well, we know that 
 
  arcFG = arcFH – arcGH 
 
so  arcFG = 90° – 23½° 
 
since arcGH is the arc of the great circle through 
the poles which is intercepted between the winter 
solstice (on the ecliptic) and the equator. 
Hence  arcFG = 66½° 
so  2arcFG = 132° 17’ 20’’ (to be more exact than 133°) 
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Now we can proceed (I will not spell out all the minutes and seconds): 
 
 cd2HA : cd2AE = (cd2FH : cd2FG) c (cd2BG : cd2EB)1 
 
i.e. cd142° : cd180° = (cd180° : cd132°) c (cd2BG : cd180°) 
 
Using our table of chords: 
 
 113P : 120P = (120P : 109P) c (cd2BG : 120P) 
 
So, compounding by multiplying the numbers, 
 
 113P : 120P = (120·cd2BG) : (109)(120) 
 
And equating the products of means and of extremes: 
 
 (113)(109)(120) = (120)(120)(cd2BG) 
 
so (113)(109) ÷ 120 = cd2BG 
 
i.e. cd2BG = 103P 
 
or cd2BG = 103P 55’ 26’’   (to be more exact, like Ptolemy) 
 
Looking at our table of chords and arcs, we get 
 
 2BG = 120° 
 
so arcBG = 60° 
 
so arcEB – BG = 90° – 60° = 30° = arc EG   Q.E.I. 
 
 
 
 
So, if you tell me the length of your longest 
day (or shortest, or whatever), I can tell you 
where on your horizon the sun will rise on the 
shortest day of the year. 
 
 
 
 
 

                                       
1 Inverse of the footnote on p 28. 
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GIVEN THE LENGTH OF THE LONGEST DAY OF THE YEAR IN SOME LOCATION, 
TO FIND THE HEIGHT OF THE POLE THERE. 
 
 
 Given:  length of longest day = 14 ½ equatorial hours 
   (hence arc EG = 30°, as shown above; hence arc BG = 60°) 
   (hence, also, 2arcHA = 142° 30’, as above) 
   (hence, also, 2arcEH = 37° 30’, by subtraction from 180°) 
 
 Find:  arcBF  (the height, or depth, of the pole) 
 
 
Again, I will leave out all the minutes and seconds to keep things simple. 
 
Well,  cd2EH : cd2HA = (cd2EG :cd2BG) c (cd2BF : cd2AF) 
 
i.e.  cd37° : cd142° = (cd60° : cd120°) c (cd2BF : 180°) 
 
so  38P : 113P = (60P : 103P) c (cd2BF : 120P) 
 
thus  cd2BF = 70P 
 
so  2arcBF = 72° 
 
so  arcBF = 36° 
 
Q.E.I. 
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GIVEN THE HEIGHT OF THE POLE IN SOME REGION, TO FIND THE LENGTH OF 
THE LONGEST AND SHORTEST DAYS OF THE YEAR IN THAT SAME PLACE. 
 
 

Given: The height of the pole = arc BF = 36° 
 (hence 2arcBF = 72°) 
 (hence, too, arcAB = 54°, so 2arcAB = 108°) 
 (also, arcFG = arcFH – arcGH = 90° – 23° = 66°, so 2arcFG = 132°) 
 (and 2arcGH = 47°, the arc between the tropics) 
 (and 2arcAE = 180°) 
 

Find: Difference between the longest (or shortest) day and the equinoctial day  (in 
equatorial hours). 

 
(Again, I’ll use rounded numbers to keep things simple.) 
 
Well,  cd2BF : cd2AB = (cd2FG : cd2GH) c (cd2EH : cd2AE) 
 
i.e.  cd72° : cd108° = (cd132° : cd47°) c (cd2EH : cd180°) 
 
so  70 : 97 = (109 : 48) c (cd2EH : 120) 
 
so  (70 : 97) c (48 : 109) = cd2EH : 120 
 
so  3360 : 10573  =  cd2EH : 120 
 
so  cd2EH = 38 
 
so  2arcEH = 37½ ° 
 
But it takes the same time for G to go to L on our meridian as it 
takes H to go to A on our meridian, since FGH is a celestial 
meridian, spinning about the celestial poles.  But for the sun to 
go from G to L takes half the shortest day; therefore the time for 
H to go to A is half the shortest day.  But arc EA is 90°, so the 
time for that arc is half the equatorial day.  Hence 2arcEH is the 
arc whose time corresponds to the difference between the 
shortest day and the equinoctial day. 
 
Since  2arcEH = 37½ ° 
thus  difference between shortest & equinoctial : 24 = 37½ : 360 
so  diffc. btwn. shortest & equinoctial days = 2.5 hours 
 
Hence the shortest day of the year = 12 – 2.5 = 9 ½ equatorial hours 
and the longest day of the year = 12 + 2.5 = 14 ½ equatorial hours 
Q.E.I. 
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DOES THE SUN PASS THROUGH THE ZENITH IN YOUR LATITUDE?  IF SO, 
WHEN? 
 
Ptolemy asks this question in Chapter 4 of Book 2 of his Almagest. 
 If your latitude on earth is more than 23½° north or south of 
the Earth’s equator, the sun never reaches your zenith, Z. 
 
 T is where the path of the summer tropic cuts your meridian 
NTZQRS. 
 Q is where the equator cuts your meridian. 
 R is where the path of the winter tropic cuts your meridian. 
 
So if your zenith Z is on arc TR, the sun is at your zenith at least once 
a year (twice a year if Z is between T and R, and not on one of them). 
 
WHEN does this happen? 
 
You can measure arc ZQ in your sky.  But this is a piece of your meridian cut off between 
the ecliptic and the equator, on a day of the year that the sun is at Z (since the sun is always 
on the ecliptic).  Hence arc ZQ is an entry in our Table of Obliquity (Day 13, pp.91-93).  Just 
look up the value of arc ZQ (as measured or observed in your sky with his Meridian Machine 
of Ch.12) in the “Meridian” column of the Table of Obliquity, and see how much arc of 
ecliptic is between Z and the spring equinox.  But given the location of the Sun in degrees 
from the spring equinox, one can say what time of year it is, or on what day of the year the 
sun will be at Z.  For 
 
 1 full year : X amount of time from the last spring equinox 
 
 = 360° : number of degrees the Sun is from the spring equinox 
 
So we can solve for X, which will tell us on what day of the year the sun will be at our 
zenith. 
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EXERCISE:  Find the height of the pole above your horizon by observing where Polaris 
appears above your horizon using a simple device (e.g. a hinged pair of sticks with a nut that 
can tighten and hold the angle fixed, and a protractor to measure the angle between them).  
Then, using the techniques we learned, and given your latitude by the height of the pole 
which you observed, calculate the length of the longest day of the year (in equatorial hours) 
where you live, and say whether the sun reaches our zenith or not.  Check your answers 
against values which you can look up on the internet, and see how close you come. 
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PTOLEMY 
 

DAY 15 
 
 

MORE PROPERTIES OF TERRESTRIAL PARALLELS 
 
 
Ptolemy continues his investigation of the properties of different latitudes on earth in 
Chapters 5 and 6 of Book 2 of his Almagest.  In Chapter 5, he considers this problem:  Given 
some latitude on earth, find the ratios of the noon-shadows cast by the same stick at that 
latitude on the summer solstice, the winter solstice, and the equinoxes.  We could just wait 
for those times of year and measure the three shadows (the ones on the equinoxes should be 
equal), but we don’t have to wait.  We can figure it out right now.  We’ll use Ptolemy’s 
example of the latitude of Rhodes to illustrate the method. 
 
 
 
 
 
 
 
 
 
 
 
 
Given: Latitude = 36°  (Rhodes) 
Find: Ratios of the summer, winter, and equinox noon-shadows 
 
E  is Earth 
P  is Polaris 
A  is Zenith 
B  is where the equator passes through the meridian 
G  is summer tropic 
L  is winter tropic 
 
Draw lines through LEN, BEF, GEK through to the tangent at C, and the triangle CEN now 
is similar to a stick CE casting shadows proportional to CK, CF, CN when the sun is at the 
summer tropic, equinox, and winter tropic respectively.  (The diagram is like an enormous 
magnification of a similar scenario going on at E; OR it simply is the diagram of the stick, 
imposed on a meridian circle which is a miniature of the real celestial meridian.) 
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Now the arc between the zenith & equator (on the meridian) is equal to the arc between the 
horizon & the north pole (on the meridian), i.e. 
 
 arcAB = arcPR = 36°   [the given latitude] 
but arcBG = 23° 51’ 20’’   [ ½ the arc between tropics] 
so arcAG = 12° 8’ 40’’ = arcCH 
and arcAL = arcAB + arcBL = 36° + 23° 51’ 20’’ = 59° 51’ 20’’ = arcCM 
 
so ∠CEK = arcCH = 12° 8’ 40’’ 
and ∠CEF = arcCD = arcAB = 36° 
and ∠CEN = arcCM = 59° 51’ 20’’ 
 
So now, taking CA as 120, or CE as 60, what are the shadows CK, CF, CN? 
 
Well, ∠CEK = 12° 8’ 40’’ 
so ∠CRK = 24° 17’ 20’’ 
so CK = 25P 14’ 43’’  where EK = 120 
so CE = 117P 18’ 51’’  (chord of the supplement of ∠CRK) 
 
So if we decide to call CE 60 now, then 
 
 117P 18’ 51’’ : 25P 14’ 43’’ = 60P : CK 
 
so CK = 12P 54’ 42’’  when CE = 60 
 
 
Now ∠CEF = 36° (since arc CD = 36°) 
so ∠CSF = 72° 
so CF = 70P 32’ 3’’  where EF = 120 
so CE = 97P 4’ 56’’  (chord of the supplement of ∠CSF) 
 
So if we decide to call CE 60 now, then 
 
 97P 4’ 56’’ : 70P 32’ 3’’ = 60P : CF 
 
so CF = 43P 35’ 33’’  when CE = 60 
 
 
 
 
And ∠CEN = 59° 51’ 20’’ 
so ∠CTN = 119° 42’ 40’’ 
so CN = 103P 46’ 16’’  where EN = 120 
so CE = 60P 15’ 42’’  where EN = 120 
 
So if we decide to call CE 60 now, then 
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 60P 15’ 42’’ : 103P 46’ 16’’ = 60P : CN 
 
so CN = 103P 19’ 14’’ when CE = 60 
 
 
 
In Chapter 6 of Book 2 of his Almagest, Ptolemy provides a kind of table or almanac of the 
properties of various latitudes on earth, as determined by the foregoing methods.  We will 
not discuss them all here, but only some of the more interesting ones, namely Parallels i, vii, 
x, xi, xxxiii, xxxiv, xxxix 
 
We have seen that given the length of the longest day of the year in some spot on earth, we 
can find the height of the pole in that place, i.e. the latitude (see Day 14).  Therefore we can 
find the latitude of places where: 
 
Longest day = 12 hours 
Longest day = 12 ¼ hours 
Longest day = 12 ¾ hours 
Longest day = 13 hours  etc. 
 
And so Ptolemy divides terrestrial latitudes by increments of ¼-hour  increases in the length 
of the longest day of the year from the latitude where the longest day is 12 hours (the 
equator) to the place where the longest day is 18 hours.  From 18 to 20 hours, he divides by 
½-day increments, and from 20 to 24 hours he divides by whole-day increments, and then 
after that he jumps by much longer amounts of time (since at the North Pole the longest day 
of the year, in a sense, is 6 months!). 
 
Now a little point about Ptolemy’s vocabulary. 
 
A “gnomon” is what Ptolemy calls a stick in the ground used to cast a shadow and tell us 
things about the Sun.  The word “gnomon” comes from the word for knowledge.  So a 
“gnomon” is an index, an indicator, a pointer.  And the stick in the ground points to the sun if 
there is no shadow at all, or the line joining the tip of the shadow to the top of the gnomon 
points directly to the Sun (which we can’t look directly at, or not safely). 
 
Also, “skia” is Greek for shadow, or shade.  So “amphiscian” means ambi-shadowed, i.e. a 
place where noon-shadows can point to the north and also to the south at different times of 
year (due north and due south at opposite solstices).  “Heteroscian” means “one-or-the-
other-shadowed”, or preferentially-shadowed, e.g. a place where noon-shadows can only 
point north, never south (or vice versa).  “Periscian” means “round-about-shadowed,” i.e. a 
place where the shadows can point in all directions.  Let’s consider these properties in 
specific parallels. 
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SPECIFIC PARALLELS 
 
 
[i]  The parallel under the celestial equator (i.e. earth’s equator) has the following properties: 
 1)  It’s the only place where every day equals every night. 
 2)  It is “amphiscian,” i.e. the noon-shadows fall north in winter, south in summer, so 
the shadows fall both ways. 
 3)  The sun passes through the zenith once at each 
equinox. 
 4)  The summer solstice noon-shadow = winter 
solstice noon-shadow (if you use the same gnomon). 
 5)  The poles are on the horizon. 
 6)  No star traces out a full circle in the sky, but rather 
all trace out 180°.  There are no “always visible” stars, i.e. all 
stars rise and set. 
 7)  The weather is warm, since the sun’s path never 
gets very low in the sky. 
 
 
 
[vii]  This parallel is the terrestrial Tropic of Cancer, a circle 
traced out on the surface of the Earth (once every 24 hours) 
by a line joining Earth’s center to the summer tropic on the 
ecliptic.  Here the longest day is 13 ½ hours.  This latitude is 
23° 51’ north of Earth’s equator, and has the following 
properties: 
 1)  This is the first “heteroscian” parallel:  noon-
shadows fall north all year, but at the summer solstice, when 
the sun is at the zenith, there is no noon shadow. 
 2)  The sun passes through the zenith only once a year 
(at the summer solstice). 
 3)  The winter solstice noon-shadow is greater than 
the equinox noon-shadow. 
 
 
 
 
 
[x]  Latitude 33° 18’ north of the equator.  The longest day here 
is 14¼ hours.  The summer solstice noon-shadow is less than 
the equinox noon-shadow which is less than the winter solstice 
noon shadow.  This latitude is clearly heteroscian, since the 
noon-shadows are cast to the north year round. 
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[xi]  Latitude 36° north.  The longest day is 14 ½ hours. 
Again:  summer solstice noon-shadow < equinox noon-shadow < winter noon-shadow. 
 
 
 
 
 
 
[xxxiii]  Latitude 66° 8’ 40’’ north.  The longest day is 24 hours.  
Anywhere closer to the equator will not have a day that long, and 
anywhere north will have a day that is longer than 24 hours.  So 
this is the Arctic Circle.  We can determine this latitude which is 
the first to have a 24 hour day, since that will be the place where 
the sun’s orbit at the summer solstice just touches the horizon, so 
that on that day, in that place, the sun is above the horizon for 
one full rotation, and then begins its southern descent again, so 
that it will be partly below the horizon the next day.  But where 
will that be?  It will be in that latitude where one’s horizon intersects the sun’s paths on the 
solstice days.  But those paths each lie  23° 52’ 20’’  away from the equator, one that far 
north of it, the other that far south of it, as we determined in Day 9.  So if  Z  is the zenith at 
such a latitude, and  S  is where the sun cuts the meridian at the summer solstice, and  E  is 
where the equator cuts the meridian, and  W  is where the sun cuts the meridian at the winter 
solstice, then 
 
Arc EZ = arcWZ – arcWE = 90° – 23° 52’ 20’’ = 66° 8’ 40’’. 
 
But the angle between one’s zenith (Z) and the equator (E) is one’s latitude. 
 
When the sun is at S, there is a 24 hour day. 
When the sun is at W, there is a 24 hour night. 
 
 
 
 1)  This is the first “periscian” parallel, i.e. where the shadows can fall in all 
directions (360°), namely on the summer solstice, when the shadow of the gnomon goes 
around in one full circle. 
 2)  This is the first parallel from which one can see the whole celestial parallel 
through the summer tropic, and none of the parallel through the winter tropic, in the heavens. 
 3)  At this parallel, the ecliptic coincides with the horizon once every 24 hours. 
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[xxxiv]  Latitude 67° north (very nearly).  Here the longest day is 
one month.  Here, arc ABC of the ecliptic never sets, and so as 
long as the sun is on that part of the ecliptic, the sun never sets. 
 
 
 
 
 
[xxxix]  Latitude 90° north, i.e. the terrestrial North Pole.  The horizon always coincides with 
the equator.  Here there is a 6 month day and then a 6 month night.  The northern 180° of the 
ecliptic never sets, and the southern 180° of it is always below the horizon.  All the stars go 
about the observer in circles parallel to the horizon. 
  
 
 
 
 
 
 
 
 
 
 
 

N

S

Equator & 
Horizon

W

(Z)

Ecliptic

N

S

Z

A

C

B

Ecliptic
Horizon



 108 

PTOLEMY 
 

DAY 16 
 
 

THE BASICS OF SOLAR THEORY:  THE SOLAR PERIOD AND ITS REGULAR 
AND IRREGULAR MOVEMENT 

 
 
We are now in Book 3 of the Almagest.  We’ve spent a lot of time on Earth.  Now it’s time to 
begin studying the things in the heavens themselves, not just the appearances they cause at 
various latitudes on our world.  Following Ptolemy’s order, we will begin with the sun.  
There are several reasons to do this.  First of all, it is in many ways the easiest thing to 
observe.  Second, it is somehow fundamental to the movements of the other planets, as we 
shall see—they all exhibit patterns of behavior and cycles that are clearly connected to the 
sun.  (This odd fact, which will strike us more and more as we go through Ptolemy, should 
make us begin to wonder whether we got it quite right when we made everything, including 
the sun, go around the Earth.)  After we have considered the basics of Ptolemaic solar theory, 
we will skip the lunar theory (in the interests of brevity and simplicity) and study the planets, 
focusing on one “inner” planet, Venus, and one “outer” planet, Saturn. 
 
 We have already seen that the sun has two motions:  one by which it moves daily 
with the celestial sphere, rising and setting in circles parallel to the celestial equator, but 
another one by which it moves in the opposite direction on the ecliptic, which is at an angle 
of about 23.5° to the celestial equator, and which it completes in a year.  Strictly speaking, 
then, the sun does not make parallel circles, but more like a spiral.  As it crawls backward 
along the ecliptic, it is also being spun around much more rapidly by another sphere which 
moves just like the celestial sphere, and the sun’s path compounded of these two motions is a 
giant coil or helix going from the circle of the summer tropic down through the equator and 
to the circle of the winter tropic, without about 365 passes in it. 
 
 Our first question about the sun’s proper movement on the ecliptic will be about the 
time it takes, or its “period.”  How long does it take the sun to go from one point on the 
ecliptic back to that same point again once?  For example, from spring equinox back to 
spring equinox?  Of course it takes about a year, or around 365 days.  But we want to get a 
nice exact figure, as precise as we can, so that we can chop this up and say exactly how far 
the sun moves (in degrees, now, not in miles or kilometers) on its annual orbit even in small 
amounts of time, e.g. in a single hour or in five minutes.  That sort of information will 
become handy as we proceed to the study of the planets.  And, as we shall see, certain key 
advances in astronomy become possible only with great precision and accuracy in our 
observations.  That is seen most plainly in Kepler, but we shall begin to see it even in 
Ptolemy. 
 
 
 

 



 109 

THE PRECISE LENGTH OF THE YEAR 
i.e. OF THE PERIOD OF THE SUN’S MOTION ON THE ECLIPTIC 

 
 
Ptolemy sets about determining the period of the sun’s motion on the ecliptic in Chapter 1 of 
Book 3 of his Almagest.  He refers to a certain gentleman named “Hipparchus,” another 
astronomer who lived about 260 years before Ptolemy (see Almagest Book 7 Ch.1).  
Hipparchus also wished to determine the solar period, but in doing so he ran into a problem, 
which can be summed up like this: 
 
 [A]  If we measure the time from when the sun cuts (e.g.) the northernmost point on 
our meridian or horizon (namely at summer solstice) to when it comes back to that point, 
then 
  A YEAR < 365 ¼ days 
 [B]  If we measure the time from when the sun is at one place among the fixed stars 
to the next time it is there, 
  A YEAR > 365 ¼ days 
 
That is an odd discrepancy!  To understand it, we need to grasp what the two methods are for 
measuring the period.  The second one, [B], is easier to understand.  We take observations of 
the Sun when it is setting, and look at the opposite point on our horizon, and see where that 
point falls in the zodiac (using the rising stars there to guide us).  Then we look at our star 
charts, and see what point in the zodiac is exactly 180° away from the point we observed, 
and that is the point where the Sun is.  We then wait for the Sun to move through all the stars 
and come back to that same spot in the zodiac, about a year later, keeping count of the days.  
Now it is hard to say in what part of a given day the Sun is exactly in some spot in the 
zodiac—so what’s with the “¼ day” business?  One way to get more precise than to the 
nearest day is to count the days not during a single return to the same spot in the zodiac, but 
the days taken for the sun to return to the same spot 50 times, or 100 times, or more.  If we 
divide the total number of days by the number of times the sun went round, we will have a 
more precise figure for its period than just to the nearest day. 
 The first method, method [A], is from one solstice day back to the same solstice day, 
e.g. from summer solstice to summer solstice.  How do we know that the sun is at the 
summer solstice?  If we just say “because it is the longest day of the year,” then we will get a 
figure for the period which is only to the nearest day.  We need more precision than that.  
One way is to take a more accurate observation of a solstice (or equinox, for that matter), by 
locating the furthest point north of the equator at which the sun has ever been observed.  The 
sun is only at the northern tropic for an instant in time, climbing up to it and passing right 
through it and coming south again.  So if we observe carefully on the day of the summer 
solstice, we might see that at some point during the day it is not quite as far north of the 
equator as it has been observed in the past, and later in the day it is that far north.  Later still, 
it is no longer that far north.  We have witnessed the exact moment of the solstice!  If we can 
get a fairly accurate observation that way, then we can get a value for the period of the sun 
(or the length of the year) which is more precise than to the nearest day.  And we can also 
use the same technique as in method [A], measuring the time not between one solstice and 
the next similar one, but between one solstice and a similar one 50 cycles later. 
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 At any rate, measuring the length of the solar period in these two different ways, we 
get two distinct values!  How did Hipparchus explain this? 
 Hipparchus explained this by assuming there is a very slow eastward motion of the 
sphere of fixed stars contrary to its prime movement, and about the poles of the ecliptic.  
(This is the same as the “precession of the equinoxes,” or the slow wobble of earth’s axis—
more on this later.)  The sphere of fixed stars, like the sun, has two movements, and so two 
sets of poles—one around which it moves with the daily motion, another around which it 
moves with a much slower motion, in the opposite direction.  So the solar year is slightly 
longer, measured against the fixed stars, because they are also moving with a “motion of the 
other” (i.e. eastward), very slightly.  It is as if the sun were a runner on the inside track, and 
the stars were a runner on an outside track, and the stars were moving in the same direction 
as the sun, but extremely slowly.  If we don’t notice that the stars are running, we can think 
that the sun is back to its same spot just because it is caught up with the same star once 
again.  But that star has moved a tiny bit on the track!  And that means that the sun has 
actually gone one full circle plus a tiny bit. 
 
 Ptolemy sides with Hipparchus and chooses to define the solar period (or year) as 
[A], the time for the sun to make one full circuit around the ecliptic (although once it returns 
to that point, it is not in exactly the same position relative to the fixed stars).  So, for 
instance, it is the time from equinox back to the same equinox. 
 Why choose this one?  Because that is proper to the sun itself, relative only to us 
(who are fixed).  Defining with reference to the fixed stars is arbitrary and extrinsic, because 
that sphere itself has a motion contrary to the prime motion.  One might as well take Saturn, 
and say the time it takes for the Sun to be again at the same longitude with Saturn is “one 
solar year.”  That is obviously arbitrary. 
 So we must pick what we mean by saying that the sun is “again at the same point.”  
Not with reference to fixed stars.  Not with reference to a planet.  Then what?  Well, when it 
is again at the northernmost point of its orbit; or the southernmost point; or exactly in 
between (at an equinox). 
 
How do we accurately find the length of the year thus defined? 
 
This “year,” as we have defined it, falls short of the ¼ day (above the 365 days) by so slight 
an amount, no difference is easily seen in one year from the 365 ¼ days.  And we cannot get 
an accurate and precise observation of how far it falls short of the ¼ day, because the exact 
instant in which the sun is on the celestial equator is tough to pinpoint, and it might happen 
when the sun is below our horizon. 
 
 •  Thus we find the difference by multiplying it many times (i.e. over many years) 
and dividing.  Similarly, if you have a sheet of paper, and you are wondering how thick it is, 
and you know that it is less than a millimeter, but you can’t say by how much with any 
precision by measuring the thickness of a single sheet, you can stack up 500 sheets and 
(assuming there is no air between them, and all the sheets are exactly equally thick) measure 
the stack in millimeters and divide by 500, and you will get a precise value for the thickness 
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of one sheet!  For instance, if the stack of paper is 30 millimeters thick to the nearest 
millimeter, then each sheet is .06 millimeters thick. 
 
 •  Likewise we have a pile of identical years.  And while we can’t get a very precise 
value for one of them just by observing the time from a spring equinox back to a spring 
equinox, thanks to observations of many astronomers gathered by Hipparchus we know that 
 
 300 years in a row = [(365.25)300 – 1] = 109574 days 
 
so 1 year = 109574 ÷ 300 = 365.246 days 
or 1 year = 365D + 14’ + 48’’ 
i.e. 1 year = 365 days + 14 sixtieths of a day + 48 3600ths of a day 
i.e. 1 year = 365 days 5 hours 55 minutes 12 seconds 
 
That gives us the length of the year to the nearest second.  Pretty good. 
 
But now how do we calculate solar movement on the ecliptic in a given time?  How do we 
know how far it goes in a single day, or hour, or minute? 
 
Short answer:  We assume that the sun’s motion is perfectly uniform in angular velocity on 
its own perfectly circular orbit.  No proof is given for this—it is part of the world-view of 
Ptolemy.  This bears on the “Astronomer’s Axiom” which is discussed below. 
 
If we assume that the sun’s motion is totally uniform, then obviously since we know how 
long it takes to go 360°, we also can determine how long it takes to go any given number of 
degrees, or, conversely, given a time, we can say how many degrees it moves on its circle.  
So Ptolemy builds up tables of the sun’s uniform motion. 
 
For example, since the sun goes 360° of ecliptic in 365.246 days, then if we divide by 
365.246, we get how many degrees the sun goes in 1 day, 
 
i.e. .985635278°  in one DAY 
or, sexagesimally, 
 [59/60 + 8/602 + 17/603 + 13/604 + 12/605 + 1/606]° in one DAY. 
 
Now multiply that by 30 to get how far it goes in one Egyptian MONTH (which is exactly 30 
days), and by 365 to get how far it goes in one Egyptian YEAR (which is exactly 365 days), 
and by (365 × 18) to get how far it goes in 18 Egyptian years: 
 
Sun goes 29.56911° in 1 Egyptian MONTH 
i.e.  [29 + 34/60 + 8/602 + 36/603 + 36/604 + 15/605 + 30/606]° 
 
Sun goes 359.757505° in 1 Egyptian YEAR 
i.e.  [359 + 45/60 + 24/602 + 45/603 + 21/604 + 8/605 + 35/606]° 
 
Sun goes 6475.63509° in 18 Egyptian YEARS 
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i.e.  17 full circles plus 355.63509° 
i.e. 17 full circles plus  [355 + 37/60 + 25/602 + 36/603 + 20/604 + 34/605 + 

30/606]° 
 
 
In Chapter 2 of Book 3 of his Almagest, Ptolemy produces three Tables of the Sun’s 
Regular Movement. 
 
 
TABLE 1  gives the surplus of the sun’s mean motion over some number of complete circles 
in 18 Egyptian years, in 18 × 2 Egyptian years, in 18 × 3 Egyptian years, etc. 
 Note:  the Egyptians had a year of 360 days, plus 5 “intercalary days” when they 
would stop working and drink beer.  These 5 days were not on the calendar, since there were 
12 months of 30 days each, which gave a year of 360 days, leaving 5 days extra. 
 
 
TABLE 2  gives the surplus of the sun’s motion over some number of complete circles in 1 
Egyptian year, 2 Egyptian years, 3 Egyptian years, etc. 
 This table also gives the measure of the sun’s motion in 1 hour (i.e. in the time it 
takes to go 1/24 of 1/365.246 of its full 360°), in 2 hours, etc. 
 
 
TABLE 3  gives the measure of the sun’s motion in 1 Egyptian month (30 days), in 2 
months, etc.  It also gives the measure of the sun’s motion in 1 day (i.e. the time it takes to 
go 1/365.246 of its full 360°), in 2 days, etc. 
 
 
 
 
 
 
 
 
 
 

THE (ANCIENT) ASTRONOMER’S AXIOM. 
 
It is a foundational principle of science that the complex should be explained through the 
simple, as far as this is possible.  There is a good deal of inductive support for thinking that 
nature behaves simply and follows relatively simple rules, and there is also some reason to 
think this.  But what exactly counts as “simple”?  That’s the hard part.  If we see planets 
looking like they do zig-zags in the sky, sometimes stopping, sometimes going this way, 
sometimes the opposite way, one “simple” understanding of this is that they are really doing 
just what they look like they’re doing—they’re stopping, going backwards, going forward 
again, stopping again, and so on.  If we were content with that sort of thing, we would not 
get very far in our understanding of the world.  We find, time and time again, that if we 
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assume these sorts of behaviors are in fact just irregular appearances of underlying 
regularities, we turn out to be right somehow, and our understanding advances. 
 Ptolemy’s understanding of “simple” is very simple.  He assumes that planets move 
at perfectly uniform speeds on perfect circles—sometimes more than one circle.  With that 
assumption about them, he sets out to explain all the appearances in the heavens as products 
of uniform motions around perfect circles.  That is the whole purpose of his astronomy, one 
might say. 
 Like other first attempts to understand truth, this “axiom” is not wholly false.  It is 
not an “axiom” in the sense of being self-evident, like “equals added to equals make equals.”  
But, like “the earth sits still,” or “heavier things fall faster,” it is close to something self-
evident, and it is partly true: 
 (a)  The planets come so close to making perfect circles with uniform speed around 
the sun that people laugh when they see how little Kepler’s orbit for Mars differs from a 
circle (even though it is one of the more elliptical orbits), and Newton often calls the 
planetary orbits “circles” and applies to them propositions which are true only about uniform 
motions in circles. 
 (b)  Even according to modern physics, it is exactly true that there are mathematical 
uniformities, regular laws, underlying the non-uniformity of planetary motions. 
 
 

ANOMALIES 
 
 
Together with this axiom of the astronomer, Ptolemy also introduces the word “anomaly,” 
which means any apparent speeding up and slowing down of a heavenly body.  The word 
“anomaly” comes from the Greek word for “unlawful” or “lawlessness.”  A planetary 
anomaly is an apparent “lawlessness” (or “irregularity,” an “unruly” behavior) in its motion, 
which must be explained as the product of “lawful” motion, i.e. uniform motion around some 
perfect circle.  (Aristotle, who lived some centuries before Ptolemy, insisted on all the circles 
being concentric, for physical reasons; he thought the heavenly bodies all have natural 
motions around the center of the world and not to or from it.  Ptolemy does not insist on that, 
partly because the appearances are not easily explained on such a hypothesis, and partly 
because he does not concern himself as much with trying to understand the physical nature 
or natural tendencies or motives of the celestial bodies.) 
 In keeping with the Astronomer’s Axiom, Ptolemy says that any anomaly is merely 
apparent, not a real speeding up or slowing down of the heavenly body, but only relative to 
an observer, because of the position of the circle that the body is on, relative to us.  So it is 
the job of the astronomer to separate out the “mean” motion, i.e. the uniform motion of a 
body, and the cause of the anomaly, i.e. some eccentricity or epicicyle (more on this later). 
 
 

SOLAR ANOMALY 
 
 
Getting back to the sun, it exhibits certain anomalies.  In particular, it appears to move now 
faster, now slower, along the ecliptic.  In Almagest 3.4, Ptolemy specifies that: 
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 Time from Spring Equinox to Summer Tropic = 94.5 days 
 Time from Summer Tropic to Autumn Equinox = 92.5 days. 
The numbers come from Hipparchus.  They are not inferred from some fact of ordinary 
experience.  One has to bother to observe the times between equinoxes and solstices 
carefully, preferably over many cycles, as explained above. 
 At any rate, Ptolemy cannot just assume that the sun in fact slows down and speeds 
up at different places in its orbit.  The mere fact that it does so regularly, cyclically, taking 
the same time through any given part of its orbit, indicates some deeper regularity.  No, he 
will not assume the appearance of irregularity means there is some real irregularity in the 
sun’s motion.  Instead, he will explain it by the eccentricity of the sun’s circular path around 
us—in other words, the center of that circle is off the center of the universe where we are, so 
we are not viewing the sun’s motion from the point around which it is moving uniformly.  
We will get into the details of this soon. 
 NOTE:  The gross inequality in the seasons we all 
note, for example the daylight gets longer faster near the 
spring equinox than it does near the summer solstice, is a 
matter of mere spherical geometry, and has nothing to do 
with the kind of anomaly which Ptolemy is keen to 
explain.  Even if the sun moved at a perfectly uniform rate 
around the ecliptic from our point of view, it would still be 
true that the daylight would increase more quickly and 
noticeably around the equinox than near the summer 
solstice.  Suppose the earth is at E, and H is the horizon of 
some observer (you), and Q is the celestial equator, and 
the sun makes its daily circle first at A, then at the equinox 
at Q, then at B, then it climbs north and makes a circle at J, 
and then finally at the summer solstice K.  (We are looking at all these circles of the sun’s 
motion edge-on.)  If we let arc AQ equal arc BQ, and again arc AB equal arc KJ, then it will 
take the same amount of time for the sun to climb from A to B and again from J to K.  But 
AB is at right angles to EQ, so if we complete rectangle ABCD, then GC is the amount of 
daylight (or rather, half the amount of daylight) gained during the time the sun goes from A 
to B.  But JK is tilted.  So if we draw ML parallel to it, clearly LP (or rather, double LP) is 
the amount of daylight gained during the time the sun goes from J to K.  And plainly, since 
PM = GD, and these are in line with each other, it follows that PL < GC.  Hence there is less 
gain of daylight during the time from A to B near the equator than there is during the equal 
time from J to K near the solstice.  And that will be true even if we suppose that the sun 
moves at a perfectly uniform rate around the ecliptic. 
 But Ptolemy sees that if we plot where the sun is on the ecliptic throughout the year, 
and note the dates, it spends unequal amounts of times in sweeping out equal angles around 
us.  It does not move at a uniform rate, but speeds up, then slows down, then speeds up 
again. 
 
 

THE “MEAN SUN” 
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If the sun appears to us to move faster or slower along the ecliptic, then it is sometimes 
ahead of, sometimes behind, where the sun would appear to be if it moved uniformly around 
us along the ecliptic with the same period.  Since Ptolemy accepts the “Astronomer’s 
Axiom” that every celestial body’s motion can be explained by uniform motion along perfect 
circles, he cannot simply take the apparent irregularity in the sun’s speed at face value.  He 
must explain it as the product of perfectly regular motion on a perfect circle (or on several 
perfect circles).  We will see how to do this in more detail on another day.  But for now, for 
the sake of explaining the concept of the “mean sun,” let’s look at one way this might be 
done.  Suppose the circular path on which the sun makes its annual eastward motion around 
us does not have its center on us at E, but instead its center is at C.  Since its center is off the 
center of the universe (us), therefore it is called an “off-center” circle, or an “eccentric 
circle.”  If we assume that the sun is moving with uniform speed on such a circle, sweeping 
out equal angles in equal times around C, then it will take the same time to go from S to A as 
to go from A to P, since ∠SCA = ∠ACP = 90°.  But what will it look like its doing to us at 
E?  It will appear to go first through ∠SEA (which is less than 90°), and then, in the same 
amount of time, it will go through ∠AEP (which is greater than 90°).  So the sun will appear 
to speed up from our point of view, even though it is really moving uniformly on its own 
perfectly circular orbit. 
 Again, if M is where the sun would appear to have gone through 90° from S from our 
point of view, then although ∠SEM = ∠MEP, the sun will actually take longer to go through 
∠SEM than ∠MEP, since ∠SCM > ∠MCP (and these are the angles that really matter, since 
C, not E, is the center of the uniform rotation).  From our point of view, then, the sun would 
be going faster through some quadrants than others.  But since SCP is a straight line, the time 
from S to P  (via A) will be the same as the time from P back up to S  (via B), since each of 
these arcs is 180° on the actual orbit of the sun.  But in those places, the sun will also have 
appeared to go through 180° around us (unlike, say, if it goes from B to A, which is really 
180° on its own circle, but appears less than that to us).  That means if we can two spots in 
the ecliptic which are 180° apart from our point of view, and between which the sun spends 
exactly half its period, we will have found the points S and P in the zodiac, and so the 
orientation of the line SCEP in the stars will be known to us. 
 Suppose we have done that.  Then position S is called the sun’s “apogee,” since that 
is where it is furthest from earth, and position P is called the sun’s “perigee,” since that is 
where it is closest to earth.  And the straight line through those points and the center of the 
orbit and our eye, SCEP, is called the solar orbit’s “line of apsides,” since it passes through 
the “apses,” that is, the highest and lowest 
points in the orbit. 
 Since we know the sun’s period (as 
determined above), we know exactly how 
much time it takes to go any number of 
degrees on its own orbit, and we know 
exactly how many degrees it has gone on 
its own orbit in any given amount of time.  
So, after observing the sun at S, the 
apogee, suppose later in the year the sun is 
at A.  To us, it looks as though it has only 
gone ∠SEA from apogee in that time.  But 
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since we know it is orbiting us on an eccentric circle, and since we know how far it must 
have really gone on its own orbit in that time, we look at our table of the sun’s regular 
movement (discussed above), and realize that the sun has actually gone through ∠SCA 
during the given time from apogee.  If we now draw ∠SEM equal to ∠SCA, and imagine the 
sun at M, we will have an image of where the sun would appear to us if it were moving 
uniformly around us instead of around C.  This imaginary or fictional sun, which moves 
uniformly around us just as the real sun moves uniformly around C, is called the “mean 
sun.”  By contrast, the location of the visible, physical sun, as it appears to us at A, is called 
the “apparent sun.”  Obviously, the mean sun always lies at the end of a line drawn from E 
parallel to CA.  These two lines coincide at S and at P, but the mean sun is ahead of the 
apparent sun from S down to P, and the opposite is true from P back up to S.  And the angle 
between the apparent sun, us (on earth), and the mean sun, or ∠AEM, is the angle of the 
sun’s anomaly at any given time. 
 There is a certain ambiguity in the term “Mean Sun.”  On the one hand, it signifies a 
fictional projection of the sun’s mean movement, and so is opposed to the “true” or 
“physical” sun, which is not really where we project the mean sun, but is where it appears to 
be, and coincides with the apparent sun.  On the other hand, the mean movement of the sun 
means its regular (and hence “true”) movement around its own center, as opposed to the 
apparent speed it seems to have around us.  So in one sense “mean” is opposed to “true,” but 
in another sense “mean” is opposed to “apparent.” 
 We will get into more detail about these things soon. 
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PTOLEMY 
 

DAY 17 
 
 
 

TWO BASIC HYPOTHESES 
 
 
 
We have seen that Ptolemy not only thinks that the nature of the heavens must be simple and 
uniform in some way, despite any apparent irregularities in their movements, but he has also 
specified the form which he thinks the simplicity and uniformity must take.  He postulates 
that the heavenly bodies produce all their apparent motions by uniform circular motions.  
That is, no matter how irregular their movements might seem, really those appearances are 
produced by the stars moving at perfectly uniform speeds around perfect circles. 
 Later, we will see that the facts force him to loosen the rigor with which one might 
expect him to apply this principle.  But for now, let’s see what his basic proposals will be in 
order to produce the appearances of the planets by means of perfectly circular motions. 
 He introduces two “primary simple hypotheses.” So he will introduce secondary 
ones, perhaps.  Also, these are “simple,” implying that he might compound them later.  
These two elementary models which will at once make the stars move in perfectly uniform 
circular motions, but also produce their apparent anomalies, are the following. 
 
 
 
(1)  FIRST SIMPLE HYPOTHESIS: 
 
THE ECCENTRIC CIRCLE.  (Or the “off-center circle”) 
 
The first hypothesis to explain apparent irregularity, or speeding up and slowing down, is the 
eccentric (“off-center”) circle.  We have already seen this explained generally back in Day 
16.  Here, we will prove a little property of this hypothesis: 
 

Suppose a circle with center E, diameter AD, your eye at F. 
Suppose arcAB = arcCD. 
Then TimeAB = TimeCD  for a heavenly body. 

 
Prove:  ∠2  > ∠4 

 
 
 ∠2  > ∠1  (it is external to rEFC) 
so ∠2  > ∠3  (∠1 = ∠3, since arcCD = arcAB) 
and ∠3  > ∠4  (it is external to rEBF) 
so ∠2  > ∠4 
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Which means that the angle through which the body appears (to you) to move in the time 
from C to D is greater than the angle through which the body appears to move in the time 
from A to B.  But those times are equal.  So the body appears to move through different 
angles in the same time, and so to speed up and slow down. 
 
If F is where the eye is, i.e. the earth, then the body appears to move more quickly around 
PERIGEE (the point on eccentric circle that is nearest the earth), and more slowly around 
APOGEE (the point furthest from the earth).  And EF is called the ECCENTRICITY, the 
amount of off-centeredness. 
 
One image I like to use is that of a racetrack.  If you are sitting inside the track, significantly 
away from its center, a car that is moving around the track at a constant pace of 100 mph will 
appear to move very quickly when near you and much more slowly when far away. 
 
A QUESTION ABOUT THE ECCENTRIC. 
 Does the proof work for any point along the diameter besides the center?  Can we say 
“From any other point than the center, the uniform circular motion will appear non-
uniform”?  What if we put point F, our eye, at D, the endpoint of the diameter?  Then the star 
will come crashing into us, perhaps, but as long as it moves at a uniform rate through equal 
arcs on the circle, it will actually appear to move at a uniform rate from point D as well (or 
any point on the circumference), not just from point E!  Why?  Because the angles from F 
standing on equal arcs of the circumference must be equal—an elementary theorem of the 
geometry of circles. 
 
 
 
(2)  SECOND SIMPLE HYPOTHESIS: 
 
THE EPICYCLE (Or the circle “upon a circle”). 
  
This is the other elementary device for explaining apparent irregularity in the heavenly 
movements.  The DEFERENT is the circle “carrying around” the epicycle, its center being E, 
where the eye or the earth is located.  The EPICYCLE is the circle whose center lies on the 
deferent, and which is being carried around the deferent.  The motion of the star around the 
center of the epicycle is uniform, and likewise the motion of the epicycle’s center around the 
center of the deferent is uniform.  But these two regular motions do not have to have the 
same speed as each other, nor do they have to be in the same direction.  Those are adjustable 
options. 
 
 
Suppose the star is at F when the epicycle is at A. 
Later, the star is at G’ when the epicycle is at B. 
 
Then the regular motion (of the epicycle around the deferent) 
= ∠AEB. 
The apparent motion (of the star) = ∠FEG’. 
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Hence the apparent motion exceeds the regular by arc BG’, which is equal to arc AG. 
 
 
 
WITH THE ECCENTRIC, THE SLOWEST SPEED IS ALWAYS AT APOGEE. 
 This is obvious.  And fastest motion is always at perigee.  But what about with the 
epicyclic hypothesis?  There we have more options ... 
 
 
THE SAME-DIRECTION EPICYCLE. 
 In the epicyclic hypothesis, there are TWO real motions going on, unlike in the case 
of the eccentric.  We have (1) the motion of the star on the epicycle, and (2) the motion of 
the epicycle on the deferent.  These do not have to be the same speed, nor do they have to be 
in the same direction.  Each is uniform, but they need not be the same uniform speed or 
direction. 
 So we can speak of a SAME-DIRECTION EPICYCLE or an OPPOSITE-
DIRECTION EPICYCLE (that is what I call them, anyway). 
 Ptolemy says that it is a property of the same-direction epicycle that the star appears 
to move fastest at apogee, e.g. at F in the diagram.  That is because the motion of the star and 
of the epicycle cooperate to produce longitudinal progression.  But when the star is at H on 
the epicycle (i.e. when it is closest to us, hence at perigee), there the two motions will 
conflict the most, and so the star’s motion on the epicycle will do the most to “undo” the 
apparent progression of the star in longitude.  So, unlike the hypothesis of the eccentric, it is 
possible for the star on a same-direction epicycle to appear fastest when it is furthest from us, 
slowest when it is closest to us. 
 Note that since the eccentric & the same-direction epicycle have opposite properties, 
they cannot be exactly equivalent to each other. 
 Also (here is a bit of a spoiler) Ptolemy will use same-direction epicycles to explain 
the planetary motions. 
 
 
 
THE OPPOSITE-DIRECTION EPICYCLE. 
 On the other hand, the opposite-direction epicycle is 
clearly like the eccentric.  If the star is at H and moving 
clockwise around A while the epicycle is moving counter-
clockwise around E, plainly the star will appear fastest to us 
there, at H.  There it is not only closest to us, but also the two 
motions are most cooperative.  Conversely, when the star is at 
F, it is not only furthest from us, but the 2 motions are also 
most in conflict.  Hence the star appears slowest at apogee. 
 Ptolemy uses this hypothesis as an equivalent for an 
eccentric, e.g. for the sun’s annual motion. 
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A QUESTION ABOUT THE EPICYCLE:  Suppose we draw a line from the center of the 
deferent to where the epicycle cuts the deferent, as DS.  Will DS be tangent to the epicycle?  
No!  DS often looks tangent to the epicycle, but in fact it cannot be tangent to it. 
 If it were, ∠ESD would be a right angle. 
 But ED = DS (being radii of the deferent), so that rEDS is isosceles. 
 Hence ∠SED would also be a right angle, which is impossible. 
 
Therefore, if we now draw DT tangent, T is not on the 
deferent.  More specifically, since ∠DTE would be a right 
angle, and DE the hypotenuse, it follows that DE > DT, and 
therefore T lies inside the circle of the deferent. 
 On the other hand, if we are not at D, but at some 
other point inside the circle, i.e. if the deferent is itself an 
eccentric circle, it might then happen that the line from our 
eye to S is tangent to the epicycle.  So don’t think it simply 
can never be done!  But the line from D to S can never be 
tangent to the epicycle. 
 
 
 
COMBINING THE HYPOTHESES, and EQUIVALENCE. 
 Ptolemy has hinted already that he will be combining the hypotheses, i.e. he will have 
epicycles moving on eccentric deferents.  You could even have an epicycle on an epicycle, if 
you want! 
 He also says, in Chapter 3 of Book 3 of the Almagest, that it is possible for two 
distinct hypotheses to be equivalent, and gives conditions under which certain hypotheses are 
equivalent—but we will discuss equivalence in Day 18. 
 
WHAT IS AN “ANOMALISTIC DIFFERENCE”? 
Ptolemy speaks of “anomalistic differences.”  What does he mean by that? 
 
 
 
 
 
 
 
 
 
 
It is the angular difference between a star’s true and regular movement (angle 3) and its 
apparent and irregular movement (angle 2).  That difference is angle 1  [by Euclid 1.32 in the 
eccentric, and by simple subtraction in the opposite-direction epicycle]. 
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Ptolemy also uses the terms “greatest passage” and “mean passage” and “least passage.”  
What Ptolemy calls the point of “greatest passage” we would today call the point in its orbit 
at which a planet (or the sun or the moon) has the greatest apparent speed.  Similarly, what 
he calls the point of “least passage” would be the point at which its apparent speed is 
slowest.  And what he calls the point of “mean passage” we would call the place where it 
appears to move with its average apparent speed around us, or, what comes to the same 
thing, where it appears to move with its mean speed, i.e. with its actual uniform speed.  But 
since these are exactly points in its orbit, not whole chunks of its orbit, we cannot talk this 
way without introducing the idea of an instantaneous speed, which is not something that 
Ptolemy would have done.  So instead he makes these points dividing points.  The point of 
“greatest passage” is the point dividing the planet’s motion such that up to that point the 
planet appeared to be speeding up, but after that point it appears to be slowing down.  And 
the point of “least passage” is the point dividing the planet’s motion such that up to that point 
the planet appeared to be slowing down, but after that point it appears to be speeding up.  
And the point of “mean passage” is one of two points:  one divides the planet’s motion such 
that up to that point it appeared to be moving faster than the mean speed, but afterward it 
appeared to be moving more slowly than the mean speed, while the other one is the 
reverse—prior to it, the planet’s apparent motion was slower, afterward faster, than the mean 
speed.  
 
 
GREATEST ANOMALISTIC DIFFERENCE THEOREM. 
 
Given:  Eccentric with center E, 
  Earth at F, 
  Apogee at A, 
  Perigee at C, 
  Apparent 90° from apogee at B, 
  i.e. ∠AFB = 90°. 
 
Prove:  • ∠EBF is the greatest anomalistic difference 
  • B is the point of mean passage 
  • Time (from least passage to mean) > 
     Time (from mean to greatest passage) 
 
 
 
 
Take random points H and K on the circle on either side of B. 
 
I say that ∠EBF > ∠EHF 
and  ∠EBF > ∠EKF 
 
For  HF > BF  [Euclid 3.7; 3.3] 
so  HF > FD  [BF = FD] 
so  ∠HDF > ∠DHF 
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but  ∠EDH = ∠EHD [Euc. 1.5] 
so  ∠EDF > ∠EHF [sums] 
i.e.  ∠EBF > ∠EHF [since ∠EDF = ∠EBF] 
 
Again  DF > KF  [Euc. 3.7; 3.3] 
so  ∠FKD > ∠FDK 
but  ∠EKD = ∠EDK [Euc. 1.5] 
so  ∠EKF < ∠EDF [remainders] 
i.e.  ∠EKF < ∠EBF [since ∠EDF = ∠EBF] 
 
Hence ∠EBF is the greatest anomalistic difference. 
 
Q.E.D. 
 
 
 
 
 
I say next that B is the point of mean passage, i.e. the point such that when the sun is there, 
its apparent speed is the same as its regular speed, or the point dividing arc ABC such that in 
arc AB the sun appears to be moving slower than its mean speed, but in arc BC it appears to 
be moving faster than its mean speed. 
 Think of the apparent movement and the regular movement as being analogous to 
two cars on a highway.  As long as apparent is slower than regular, the difference in the 
distances they cover in more and more time gets greater and greater.  That distance between 
them stops increasing precisely at the moment when the apparent begins to catch up with the 
regular, i.e. when apparent stops being slower and starts being 
faster than the regular. 
 But when does the apparent stop being slower and start 
being faster than the regular?  As soon as they are going the 
same speed.  Hence at the very same instant they are going the 
same speed they have also reached the maximum difference 
between them. 
 Therefore the point of greatest anomalistic difference, 
namely B, is the point of mean passage.  But the star is 
apparently slower than the true (mean) speed all the way from A 
to B, and faster all the way from B to C. 
 
And since arcAB > arcBC, 
thus  Time(thru arc AB) > Time (thru arc BC) 
so  Time[least to mean] > Time[mean to greatest] 
 
Q.E.D. 
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COROLLARY. 
 As a corollary, we now also see that “arc 
AB > arc BC by twice the arc containing the 
greatest anomalistic difference.” 
 
 
For if we draw ER parallel to FB, 
then ∠1 = ∠2 
so arcRB = arc of ∠2 (the arc which ∠2 
 would stand on if its vertex were 
 placed at E) 
 
i.e. arcRB = arc of greatest anomalistic difference 
 
but arcAB = arcAR + arcRB 
so arcAB = arcRC + arcRB   [arcAR = arcRC] 
i.e. arcAB = [arcBC + arcRB] + arcRB 
so arcAB = arcBC + 2arcRB. 
 
i.e. arcAB = arcBC + twice the arc of the greatest anomalistic difference. 
 
Q.E.D. 
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PTOLEMY 

 
DAY 18 

 
 

GREATEST ANOMALISTIC DIFFERENCE AND MEAN PASSAGE IN THE EPICYCLIC 
HYPOTHESIS; 

FIRST EQUIVALENCE PROOF 
 
 
In Day 17, we were introduced to the two primary simple hypotheses which Ptolemy will 
employ in order to explain the anomalies in celestial movements by means of perfectly 
uniform circular motions.  These were the eccentric and the epicyclic hypotheses.  We also 
learned some of their basic properties.  But while we learned where the greatest anomalistic 
difference occurs in the case of the eccentric, and also where least, greatest, and mean 
passage occur, and how the times between these are unequal, we have yet to learn these 
things in the case of the epicyclic hypothesis.  So let’s do that next.  We’ll start with the 
opposite-direction epicycle, which is more like the eccentric hypothesis than the same-
direction epicycle is.  We will also consider a simple case, where the speed of the star on the 
epicycle is the same as the speed of the epicycle on the deferent. 
 
 
To find the point of the greatest anomalistic difference for the 
EPICYCLIC hypothesis: 
 

Given: Opposite-direction epicycle A on deferent D 
Apogee occurs out along line DQ 
Star speed = epicycle speed 
Star is appearing at G, one quadrant from apogee 
[i.e. ∠QDG = 90°] 
 

Prove: The anomalistic difference when the star is at G is the greatest. 
 
 
The star has gone from E to G, and the epicycle from Q to A. 
 
So ∠QDA = ∠EAG 
so AG is parallel to DQ 
so ∠AGD = ∠GDQ 
so ∠AGD = 90° 
so DG is tangent to the epicycle 
so star at G is appearing as far from A as it can, i.e. it is 
furthest off from the mean motion that it can get. 
So ∠ADG is the greatest anomalistic difference. 
 
Q.E.D. 
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NOTE:  There is only one other point of tangency on the epicycle and so the greatest anomalistic 
difference occurs twice. 
 And G is also the point of MEAN PASSAGE, because at G the star on the epicycle is coming 
straight at the observer D, and thus contributes nothing to the apparent speed, so the apparent speed is 
only the motion on the deferent, i.e. the mean speed. 
 Also, unlike the case of the eccentric, in this epicyclic hypothesis we can separate the cause 
of the anomaly, namely the motion on the epicycle.  And the “MEAN MOTION” is the same as the 
AVERAGE SPEED of the star around us, which will also be the same as the speed of the epicycle 
around the deferent. 
 
 
 
THE REST OF THE PROOF. 
 We also can say, as we did in the case of the eccentric, that 
 
 Arc EG > arc GF, 
 hence the Time [Least to Mean]  >  Time [Mean to Greatest] 
 i.e. Time from apogee to G  >  Time from G to perigee 
 
 Also:  arcEG – arcGF = 2arcAC 
 where arcAC is that of the greatest anomalistic difference, or ∠ADG. 
 
For: 
 
 arcEG – arcGF = [arcEK + arcGK] – [arcFK – arcGK] 
so arcEG – arcGF = arcEK + arcGK – arcEK + arcGK 
so arcEG – arcGF = 2arcGK 
so arcEG – arcGF = 2∠KAG 
so arcEG – arcGF = 2∠ADG   (since rADG similar torAGH) 
so arcEG – arcGF = 2arcAC  (in degrees, not in actual length) 
 
And we can measure arcAC if we plot the course of the mean planet. 
 
 
 
WHAT ABOUT THE SAME-DIRECTION EPICYCLE? 
 In Chapter 3 of Book 3 of the Almagest, Ptolemy says if we use a same-direction 
epicycle instead, we get the opposite result from the above, i.e. 
 Time [Greatest to Mean] > Time [Mean to Least] 
 
He uses this fact in his planetary theory later in order to determine the sort of epicycle  
at work, so it is not a small point. 
 
 Take such an epicycle, with star initially at apogee P. 
 Draw DT tangent to the epicycle at Q. 
 Draw DA parallel to QT. 
 Draw the epicycle at A. 
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 Since the epicycle went through ∠QDA, therefore the star is at G where ∠EAG = 
∠QDA. 
 

But  ∠PQT = ∠QDA  [DA is parallel to QT] 
so  ∠EAG = ∠PQT 
so  DG is tangent to the epicycle at G. 
Hence  G is the point of mean passage. 
So  Time of epicycle thru arcQA is Time[Greatest to Mean] 
and  Time of epicycle thru arcAM is Time[Mean to Least] 
and  arcQA > arcAM  (since arc QA is similar to arcPT > 90°) 

 
Q.E.D. 
 
 
 
 
 
 
 
 
 
 
AN OBJECTION TO WHAT PTOLEMY SAYS ABOUT THE SAME-DIRECTION 
EPICYCLE. 
 
 Ptolemy says that in the same-direction epicycle “there will result at the apogee the 
greatest advance, because the epicycle and the star are moving the same way.”  He also says 
that  
 

Time [from greatest to mean passage]   >  Time [from mean to least passage] 
 
and he says this follows because “in this case the greatest progress is effected at the apogee.” 
 Later, in the planetary theory (in Book 9 Chapter 5 of the Almagest, to be precise), 
Ptolemy will decide that Venus must be on a SAME-direction epicycle because, for Venus, 
Time[greatest to mean passage] > Time[mean to least passage]. 
 So what he is saying now, in Chapter 3 of Book 3, ends up being very important later, 
and it is not just possible, but NECESSARY that if we have a same-direction epicycle then 
the fastest apparent speed must be at apogee.  But we can object to what he says that idea in 
this way:  Why must we say that the fastest motion occurs at apogee?  Yes, the two motions 
cooperate most there, but then again the star is farthest away there, and motions farther 
away seem slower.  So what stops us from supposing that if the epicycle is LARGE enough, 
then the “farness” at apogee outweighs the “cooperativeness” of the two motions there, so 
that the time of greatest apparent movement is actually somewhere after apogee, when the 
star is closer to us? 
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But it turns out Ptolemy is right.  Even though the star is farther away at apogee, and that fact 
will tend to make its truly-regular motion appear slower to us, 
nonetheless that is outweighed by the cooperativeness of the 
two motions at that place. 
 
To see this, consider the following proof. 
 
 

Given:  Epicycle E, observer O 
Star moving from apogee G in any 2 equal consecutive arcs 
AB, BC prior to tangency at T. 

 ∠1 = AOB 
 ∠2 = BOC 
 

Prove:  ∠1 > ∠2 
 
Prior to tangency, the movement of the star and of the epicycle still 
cooperate (although not as much as at G), but the star is also getting 
closer to us.  After tangency, the motion of the star is counteracting 
that of the epicycle, so it will not then appear to move faster (in the 
counter-clockwise direction around O).  So if the star can seem to 
move faster than at apogee, it must be while it is along arc GABCT 
somewhere.  And since the star’s apparent speed smoothly increases to its maximum and slows down 
again to its minimum, if the star is not at its maximum apparent speed at G, it must appear to speed 
up after that, so that somewhere along arc GBT, in two equal consecutive times, i.e. in the times it 
takes to go two equal consecutive arcs along the epicycle, like AB and BC, it will appear to go faster 
in the second than in the first.  In other words, if the star does not appear to move fastest at G, then 
there should be two equal arcs like AB and BC in which it appears to move faster through the second 
than through the first.  Hence the apparent ∠1 should be less than the apparent ∠2.  And so if that is 
never true, then neither is it true that the fastest apparent motion is anywhere but at the apogee. 
 
 
Now join AB, BC, DF, FK, KB, BD. 
 
 ∠CBF is supplement to ∠CDF  [Euc. 3.22] 
i.e. ∠FDO is supplement to ∠CDF 
so ∠CBF = ∠FDO 
i.e. ∠CBO = ∠FDO 
 
But  ∠2 is in rCBO and in rFDO. 
 
Hence   rCBO is similar to rFDO. 
 
Likewise rABO is similar to rFKO. 
 
And so  BC : BO = DF : DO 
and  BA : BO = FK : KO 
 
But  BC = BA 
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so  DF : DO = FK : KO 
 
But  DO > KO   [Euc. 3.8] 
 
so  DF > FK 
so  arcDF > arcFK 
so  ∠4  > ∠3 
 
Now  ∠5  = ∠6   [since arcAB = arcBC] 
But  5 = 1 + 3   [Euc. 1.32] 
and  6 = 2 + 4   [Euc. 1.32] 
so  1 + 3 = 2 + 4 
 
But  ∠4  > ∠3 
so  ∠1  > ∠2 
 
Therefore there can be no place after apogee where the star appears to move more quickly. 
 
Q.E.D. 
 
 
 
THE FIRST EQUIVALENCE PROOF. 
 
After introducing his two primary simple hypotheses, Ptolemy 
shows that it is possible for them to be equivalent to each other, 
that is, it is possible for the eccentric hypothesis and the 
epicyclic one to produce exactly the same appearances to us, if 
we adjust them the right way.  For instance, if we are at D, then 
a star moving through ∠3 on an eccentric circle of center H, 
with radius HE, will produce certain appearances, for instance it 
will appear fastest at G, slowest at E.  But the exact same 
appearances will result, throughout the motion, if we assume 
instead that the star is moving on an opposite-direction epicycle 
with radius BF = DH, and if the epicycle speed is the same as 
that of the speed of the star on the eccentric, and if the star on 
the epicycle travels with the same angular velocity (although in 
the opposite direction) as the epicycle on the deferent. 
 

Given:  Eye at D 
  Opposite-direction epicycle with radius BF 

 Concentric deferent AC 
 Eccentric with diameter EG = AC, center H, DH = BF 
 All 3 angular speeds equal 
 Epicycle has gone arcAB (in some random time) from apogee 
 F is upper point of intersection of eccentric & epicycle 
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Prove:  Star on eccentric is at F 
 Star on epicycle is also at F 
 
 
 DB = FH    [given] 
 DH = BF    [given] 
so HDBF is a parallelogram 
so 1 = 2 = 3 
so arcKF is similar to arcAB is similar to arcEF 
so star on epicycle is at F, and star on eccentric is at F. 
 
Q.E.D. 
 
 
 
Note that 
  ∠HFD is the eccentric anomalistic difference 
  ∠BDF is the epicyclic anomalistic difference 
 
Imagine the circle AC, or even draw it on a chalkboard.  Now take a piece of chalk equal to 
DH or BF.  Holding this chalk always parallel to DH or BF, and tracing out the circle AC 
with the bottom end of the chalk, the top end will trace out the circle EG, which is equal to 
circle AC, just transferring it up by the length of the chalk, DH.  In just this way, the radius 
of the epicycle is always parallel to itself, and the star at the end of it must always lie on the 
eccentric.  Beautiful! 
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IMPLICATIONS OF EQUIVALENCE. 
 What are the philosophical implications of this equivalence of these two hypotheses 
or models? 
 To the extent that they are completely equivalent, we are unable to determine which 
one is really going on (if either of them). 
 These things are mathematically equivalent, in terms of “where the body will be 
when,” but they are not physically equivalent.  That is, if one of them were really happening, 
we are positing a very different piece of machinery from what the other one would require us 
to suppose exists in the heavens. 
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PTOLEMY 

 
DAY 19 

 
 

MODEL TO ACCOUNT FOR THE SOLAR ANOMALY 
 
 
 
We have now followed Ptolemy through quite a long series of preliminaries.  We have 
learned his model for the universe in a general way without quantitative specificity.  We 
have built up a table of chords and arcs for trigonometric purposes.  We have also found 
ways to determine arcs and chords on a sphere given certain other chords or arcs.  And we 
have learned the properties of the two primary simple hypotheses he intends to use in order 
to explain the anomalies in the movements of the sun, moon, planets and stars.  We are now 
ready to begin applying what we have learned in order to develop quantitatively specific 
models for the movements of the heavens. 
 
We will follow Ptolemy and begin with the sun.  One reason to do this is that the other 
anomalies of the planets (as we shall see) seem to be somehow tied to the sun, and their 
patterns are determined by it.  In Chapter 4 of Book 3 of the Almagest, Ptolemy also explains 
that we are starting with the solar anomaly, as opposed to some planetary one, “because there 
is only one,” whereas for a planet there is a zodiacal and also a heliacal anomaly (to be 
explained later). 
 What is the solar anomaly?  Ptolemy is so quick to specify the nature of the anomaly, 
that he almost skips past telling us what it is, or how we observe it.  But the numbers from 
Hipparchus make it clear: 
 
 Days from Spring Equinox to Summer Tropic = 94.5 
 Days from Summer Tropic to Autumn Equinox = 92.5 
 
 (Ptolemy confirms these numbers by his own observations.) 
 But the angular movement from spring equinox to summer tropic is 90°, and the 
angular movement from summer tropic to autumn equinox is also 90°.  So the sun moves 
faster in the 90° from summer tropic to autumn equinox than it does in the 90° from spring 
equinox to summer tropic. 
 So either the sun is not moving uniformly on its circle, or else we are not at the center 
of its regular motion (eccentric), or it is not moving on just one circle (epicycle).  But we 
can’t say that it is not moving uniformly on its own circle, since that will destroy the 
intelligibility of astronomical phenomena (as Ptolemy conceives of it). 
 
 
 
 So we will explain this anomaly first by means of an eccentric circle.  That leaves us 
with two questions (paragraph 2): 
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 (1)  What is the ratio of eccentricity for the ecliptic? 
 (2)  Where on the ecliptic does apogee occur?  (In other words, what is the orientation 
of the line of apsides, the line joining the earth and the center of the eccentric circle?). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FINDING THE ECCENTRICITY OF THE SUN’S YEARLY MOTION. 
 
(Note:  since this diagram looks like a fried egg, students sometimes refer to this as the 
“Fried Egg Prop.” Giving names like that to propositions is not just fun, but it can also make 
them more memorable.) 
 
Given:  Spring Equinox to Summer Tropic = 94.5 days 
  Summer Tropic to Fall Equinox = 92.5 days 
 
Find:  The ratio of the eccentricity to the radius of the eccentric 
  (i.e. the ratio of EF : FO) 
 
Let circle HKLM, center F, be the Sun’s eccentric circular path. 
Let E be the earth (our eye), center of the ecliptic (circle ABCD), which is the projection of the sun’s 
actual path onto the celestial sphere. 
 
A = Spring Equinox 
B = Summer Tropic 
C = Fall Equinox 
D = Winter Tropic 
Now the sum of days from spring equinox to fall equinox is 
187 days, which is more than 365 ÷ 2 (i.e. 182.5), and so this 
course is more than half the year.  So arc HKL on the sun’s 
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path must be more than 180° (because in its regular movement, in more than half the time, it must 
complete more than half its circle),  i.e., we know we have placed the center F correctly in semicircle 
ABC since the sun spends more time on arc ABC than it does on arc CDA.  Hence the center of its 
motion lies to the left of AEC. 
 
Again, since the sun spends more time in arc AB than in arc BC, the center of the sun’s eccentric path 
is above BED.  So it lies within quadrant AEB. 
 Draw NFO parallel to AC, and PFS parallel to BD. 
 Draw HT at right angles to FN, and produce to U (hence HT = TU). 
 Draw KW at right angles to FP, and produce to X (hence KW = WX). 
Now, since the sun goes from A to C (i.e. from H to L) in (94.5 + 92.5) days, 
 
hence  arcHKL = (93° 9’ + 91° 11’)  [p.86, Table of Sun’s regular motion] 
 
so  arcHKL = 184° 20’ 
so  arcHKL – arcNPO = 184° 20’ – 180° = 4° 20’ 
so  arcNH + arcOL = 4° 20’ 
so  2arcNH = 4° 20’ 
so  arcUH = 4° 20’ 
so  UH = 4P 32’   [Table of Chords, where NO = 120P, i.e. 120 Parts] 
so  HT = ½ UH = 2P 16’ 
so  EQ = 2P 16’ 
 
Again  arcHNPK = 93° 9’   [since sun goes H to K in 94.5 days] 
 
so  arcHNPK – arcHN – arcNP = 93° 9’ – 2° 10’ – 90° 
so  arcPK = 0° 59’ 
so  2arcPK = 1° 58’ 
so  arcKX = 1° 58’ 
so  KX = 2P 4’    [Table of Chords, where NO = 120] 
so  KW = ½ KX = 1P 2’ 
so  FQ = 1P 2’ 
 
So we have EQ and FQ.  Therefore, by Euclid 1.47, we have 
 
  EF = 2P 29’ 30’’ 
 
where the FO = 120, or the radius of the eccentric is 60 parts. 
Hence  (Distance from earth to sun’s eccentric center) : (Distance from sun to sun’s eccentric center) 
= (2 + 29/60 + 30/3600) : 60  =  2.5 : 60  = 1 : 24. 
 
That is, EF : FO = 1 : 24 
 
Q.E.I. 
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FINDING THE ORIENTATION 
OF THE SUN’S LINE OF 
APSIDES. 
 
Looking back to the same givens 
and the same diagram, let’s focus on 
that right triangle FQE.  If we can 
find the value of ∠FEQ, i.e. of 
∠GEB, then we will know the 
angular distance from the summer 
tropic to the sun’s line of apsides. 
 
Bisect the hypotenuse EF in right 
triangle FQE.  Call the midpoint Z. 
 
Now, by our results above, we know 
that 
 
 FQ : EF = (1P 2’) : (2P 29’ 30’’) = X : 120 
 
So FQ = 49P 46’  [when EF = 120] 
so arcFQ = 49°  [Table of Chords] 
so ∠FZQ = 49° 
so ∠FEQ = ½ ∠FZQ = 24° 30’ 
so ∠BEG = 24° 30’ 
 
Hence apogee (G) occurs 24° 30’–worth of ecliptic before B, the summer solstice, which 
turns out to be 5° 30’ into the Twins (in the time of Ptolemy). 
 
So, according to Ptolemy, the sun is furthest away from us between spring and summer.  
(And that is still considered true today.) 
 
 
 
FINDING THE TIME IN THE LAST TWO QUADRANTS. 
 
 How long does the sun spend in arc LM? 
 
 arcOS = 90° 
 arcOL = arcHN = 2° 10’ 
so arcMS = arcPK = 0° 59’ 
so arcOS – arcOL – arcMS = 86° 51’ 
i.e. arcLM = 86° 51’ 
so time in arcLM = 88 1/8 days [Table of Sun’s Regular Movement] 
 
 How long does the Sun spend in arc MH? 

F

Z

E

Q

D

I

C

B

G

A

U HN
T

F R S

E

LO

QK

X
P W

M

Spring

Fall

Summer Winter

94
.5 

da
ys

92.5 days



 134 

 
and arcSN = 90° 
 arcHN = 2° 10’ 
 arcMS = 0° 59’ 
so arcSN – arcHN + arcMS = 88° 49’ 
i.e. arcMH = 88° 49’ 
so timeMH = 90 1/8 days  [Table of Sun’s Regular Movement] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Below is a diagram showing the Sun’s eccentric orbit around earth at E.  F is the center of 
that circle, and the line of apsides, through EF, points to N and G in the zodiac.  We saw that  
EF : FR = 1 : 24, and this drawing more or less reflects that.  You can see that while the 
sun’s orbit is eccentric, it is not very eccentric! 
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PTOLEMY 

 
DAY 20 

 
 

THE PRECESSION OF THE EQUINOXES 
 
 
In the interests of brevity, we will skip now from the solar theory to the stellar and planetary 
theory of Ptolemy.  In so doing, we pass over many things of interest in themselves, and 
things which were of great interest to Ptolemy and to ancient astronomers, such as the 
explanation and prediction of solar and lunar eclipses.  But to keep this course finite, and to 
keep it focused on certain central themes with the most wide-reaching consequences (such as 
the shift from geocentrism to heliocentrism), we now leap ahead to Book 7 of the Almagest 
where Ptolemy considers the stars, beginning with the “fixed” stars (as opposed to the 
“wandering” ones, the planets). 
 
In Chapter 1 of Book 7, Ptolemy explains that: 
 
 
 
THE “FIXED STARS” ARE FIXED. 
 The “fixed” stars are fixed on (or in) their sphere (the celestial sphere) and relative to 
each other, but the sphere itself is not fixed.  It does one full rotation per (sidereal) day. 
 (In reality, it is not exactly true that the stars are fixed relative to each other.  
Constellations very slowly change shape, and binary stars orbit a common center of gravity.  
The stars in our particular galaxy have many distinct motions, and some common ones, e.g. 
they drift with the galaxy away from all other galaxies, and they rotate about the common 
center of mass of the entire galaxy.  But all of that is light years ahead of Ptolemy.  I mention 
it here only because I don’t wish to give the impression that the stars are truly fixed in their 
apparent relative positions—they just take so long to shift in their apparent relative positions 
that their motions were not discovered until relatively recently.  And binary stars require 
telescopes, or at least binoculars, to be observed in their motions.) 
 Hipparchus thought (oddly) that only the Zodiac belt precessed, and not the other 
stars, as if some of the stars moved relative to the others.  That was an error. 
 
 
 
BOOK 7  CHAPTER 2:  THE PRECESSION OF THE EQUINOXES. 
 
In this chapter of the Almagest, Ptolemy describes what sorts of observations confirm that 
the sphere of fixed stars not only has its daily rotation from east to west about the celestial 
poles, but also has a much slower rotation from west to east around the poles of the ecliptic.  
This phenomenon is known as “the precession of the equinoxes.” Recall that the equinoxes 
are two distinct points on the ecliptic, namely where the sun’s annual path (or its projection 
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onto the sphere of fixed stars) intersects the celestial equator.  As it turns out, those two 
points are not always the same points on the celestial sphere, and similarly the two solstice 
points are not always the same points on the celestial sphere.  So there is some other motion 
going on.  And we will have to decide whether to make it a motion of the sun’s orbit, or else 
another motion of the celestial sphere itself.  But first let’s sketch out what sorts of 
observations confirm that there is some sort of motion of the equinoxes and solstices relative 
to the fixed stars.  We will go into some detail here, in some ways more than is strictly 
necessary, in order to get a sense of what astronomers have to go through in order to 
ascertain certain motions in the heavens ... 
 
 In connection with the precession of the equinoxes, Ptolemy says “This research we 
have made by means of the instrument we prepared for the observation of the moon’s 
particular elongations from the sun.”  The instrument to which he refers is an “astrolabe,” a 
compact instrument (made of concentric graduated circles) for measuring the positions of 
stars, later made obsolete by the (now also obsolete) sextant.  He described the construction 
of this instrument in Chapter 1 of Book 5 of the Almagest.  But let’s keep things simple and 
recognize that it would not be difficult to construct an instrument which one could mount on 
a tripod and orient diverse concentric circles on it along different lines of sight to different 
points in the heavens and thus take accurate readings of various apparent angles between 
those celestial points. 
 Also, in Chapter 2 of Book 7, he refers to “lunar parallax,” and other points of lunar 
theory (which we have skipped over), in order to describe observations by which it can be 
determined that the Summer Tropic precesses.  The moon is helpful in this regard, because 
although the sun’s motion defines the location of the summer tropic, we cannot directly 
measure the angular distance between a fixed star and the sun (so as to determine the 
distance of the star from the summer tropic), for the very simple reason that we cannot 
generally or easily observe the sun and a fixed star at the same time.  But we can observe the 
moon and a fixed star at the same time, and we can also observe the sun and the moon at the 
same time, so the moon becomes the connecting term.  We can observe the sun and moon 
together just before sunset, for example, and then a half hour later observe the moon and the 
fixed star in question.  (Some adjustments must be made for the half hour of difference 
between the observations, as we shall see.) 
 But back to “lunar parallax.” This detail is not terribly important for understanding 
the precession of the equinoxes, but it is involved in Ptolemy’s way of confirming the 
precession, and it is also worth knowing for itself.  So let’s take a moment to understand it in 
a general way.  Ptolemy discusses how to observe the moon’s parallaxes in Chapters 11 and 
12 of Book 5 of the Almagest (from which he determines the ratio of the moon’s distance 
from earth to the earth’s radius in Chapter 13, although his value is not very good due to 
factors we need not enter into here).  “Parallax” is the phenomenon by which the same object 
at the same instant appears against different spots on a more distant background depending 
on where one is viewing it from.  If you hold your finger out at arm’s length and look at it 
now with one eye, now with the other (closing one eye, then the other), you will see that 
your finger appears to shift back and forth on whatever background you view it against.  If 
the background is much further away than your finger, say a mountain range, your finger 
will appear against very different places on that background—but if the background is not 
much further away than your finger, say if you hold your finger up to your computer 
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monitor, almost touching it, your finger will then not appear against very different parts of 
the monitor from the two different points of view of your two eyes.  And the distance 
between the two points of observation is important.  If that distance is very small compared 
to the distance out to the object being observed, you might notice no parallax at all.  For 
instance, if you look at a tree which is nearly a mile away, and observe where it appears 
against the mountain-range behind it using your left eye, and then again using your right eye 
(while standing in the same spot), you will not see much or any parallax.  But if you observe 
that tree from one spot, then again from another spot 1 mile away along a line parallel to the 
mountain-range, you will certainly notice a parallax. 
 Because the earth’s size is not significant enough 
compared to the distances out to the stars or even the 
planets in order to produce a sensible parallax for 
observers at different places on earth (telescopes are 
needed to get those parallaxes), Ptolemy could not get any 
parallax on those bodies.  But because the earth has a 
significant size compared to the moon’s orbit (the radius 
of the earth is in fact about a sixtieth of the mean distance 
to the moon), therefore an observer at A on earth will see 
the moon at P in the fixed stars, when its “true” geocentric 
position is out at T.  This is a lunar parallax equal to 
∠AMC. 
 
So how do we ever see a true position of the moon?  If your latitude is southerly enough, the 
moon will sometimes pass through your zenith, and therefore there will be no parallax 
effect, because the line from the center of the earth to the moon will pass through you. 
 
In Alexandria, where Ptolemy lived, Latitude = 30° 58’. 
 So arcZQ, the arc on his meridian between the zenith and the 
equator, = 30° 58’. 
 So arcZR, the arc on his meridian between the zenith and the 
summer tropic, = 30° 58’ – 23° 51’ = 7° 7’.  (R is where the Summer 
Tropic cuts the Meridian.) 
 And the moon gets 5° north of that at its northernmost pass.  
So if we call the point where the moon cuts the meridian when the 
moon is its furthest north “point M”, then arcZM = 2° 7’, i.e. the 
moon is almost at the zenith when it is at its northernmost pass. 
 
Thus at a specific time and date we will have one true position of the moon from the center 
of the earth (and hence of the universe!) out to the fixed stars.  From this one true location of 
the moon at a given time and from the mean movement tables for the moon which Ptolemy 
has developed (by methods similar to those by which we developed the tables of the sun’s 
mean movement), we can calculate the moon’s true position at any point in time, compare it 
to the apparent position, and calculate the parallax.  So let us presume that we have at hand a 
table of the moon’s mean movement, and a table of the parallaxes it displays at given times. 
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With these preliminaries in place, we can now describe how Ptolemy verified the precession 
of the equinoxes. 
 
The fixed star which Ptolemy used as a reference is REGULUS, a bright star in Leo which 
sat pretty much right on the ecliptic.  Ptolemy wants to find the angular distance between that 
fixed star and the summer tropic (also on the ecliptic, of course), and compare that value to 
one which Hipparchus determined by similar methods about 265 years before him, to see 
whether it has changed. 
 
As noted above, the technique for this will be to observe the angular distance between the 
sun and moon on some particular day right around sunset, and then to observe the angular 
distance between Regulus and the moon about 30 minutes later. 
 
On a particular day, namely “in the year 2 of Antonine, Egyptianwise Pharmouthi 9, as the 
sun was about to set in Alexandria,” Ptolemy observed the moon and sun appearing to be 
about  92 + 1/8 °  apart from one another.  Knowing the date and the time, Ptolemy could 
refer to his tables of the sun’s regular movement, and, adding in all the movement around the 
sun’s own eccentric circle (about its own center) from the last time it was known very 
accurately to be at an equinox or else at a tropic, he could say precisely how far the sun 
really was from the summer tropic—again, in degrees around its own circular orbit, not in 
apparent movement around us.  He determined that its true position was  93 + 1/20 °  west of 
the summer tropic (or about 3 + 1/20 ° into the fishes or pisces). 
 
 
 
 But that does not mean we can simply measure that many degrees west of where the 
sun was appearing and get the location of the summer tropic as it would be appearing to us 
in our sky (if it would only appear, say, by glowing green out there!).  We have to remember 
that the sun does not appear to us where it “really” is according to its movement around its 
own center.  Let E be earth, H our 
horizon (or Ptolemy’s), A the position 
in our sky where the sun appears, T the 
“true” location of the sun as projected 
onto the celestial sphere from F, the 
center of the sun’s eccentric orbit, and 
X the summer tropic (a projection of 
N, the northernmost point in the sun’s 
eccentric orbit, from E, earth).  By the 
date and time and our already 
established solar theory, we know the 
angle  NFS, i.e. how far the sun is from 
its northernmost point around F, the 
center of its own orbit.  But from Day 
19, we recall that 
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and EF : FN  =  1 : 24 
 
Now there is only one triangle which can have those specifications, and we can determine all 
its sides and angles trigonometrically, using our table of chords and arcs.  In outline, here is 
how to do that: 
 
• Drop FQ at right angles to EN. 
• Since we know ∠EQF is right, and we 
know ∠ FEQ (i.e. 24° 30’), hence we 
know all the angles of rFQE. 
• Describing a circle on EF as diameter, 
we know from our table of chords and 
arcs what EQ and FQ will be in 120th 
parts of EF.  So we know all the sides of 
rFQE. 
• Since we now know the ratio EF : FQ, 
and we already knew the ratio EF : FN, 
we also now know the ratio QF : FN, 
and by the Pythagorean Theorem we 
also know the ratio of NF to either QN 
or QF.  Hence, by drawing a circle on FN as diameter, we know all the angles at the center of 
that circle subtending the sides of the triangle as chords, and we can easily determine the 
angles of rQNF.  So that triangle is fully known. 
• We know the ratios NF : EF, and QE : EF, and QN : NF.  Hence we know the ratio NE : 
EF.  And so the triangle ENF is fully known. 
•  Hence we know ∠EFN. 
•  But we know ∠NFS (as we said above). 
•  So we know ∠EFS (the remainder of 360°). 
 
Knowing the date and time, we also know what the solar anomaly would be at this point.  
Accounting for the anomalistic difference, we can calculate the value of ∠XES (or ∠XEA), 
which turns out to be 93°. 
 
So while the sun’s true angular distance from the summer tropic at the time of Ptolemy’s 
sunset observation (i.e. ∠NFS) is 93 + 1/20°, the sun’s observed or apparent angular distance 
from the summer tropic at that time (i.e. ∠XES) is just 93°. 
 
So now we know that the visible sun was, as it were, acting as a marker for the apparent 
location of the summer tropic, i.e., the summer tropic was 93° east of where the sun was 
appearing. 
 
But the moon was appearing 92 + 1/8° eastward of the sun at that particular time.  Hence it 
was appearing 
 
92 + 1/8°  =  [30° - 3° fishes]  +  [30° aries]  +  [30° taurus]  +  5 1/8 ° twins 
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so the apparent moon was  5 + 1/8 °  into the twins at sunset. 
 
Ptolemy notes that this is close to  5 + 1/6 °  into the twins which is where his lunar theory 
says the moon should have been appearing.  We’ll go with that number, then. 
 
But now we let a half an hour go by, allowing the sun to set and the star Regulus to appear.  
By the tables of the moon’s regular movement, we know that in 30 minutes of time it must 
have moved eastward along the ecliptic about ¼ °.  But that is in true movement, and from 
its true position 30 minutes ago, not from its apparent position 30 minutes ago.  By the tables 
of the moon’s parallaxes, we know that the moon at the time it was observed around sunset 
on the given date was displaying a 1/12 ° parallax.  Adjusting for that, its true position was 
not  5 + 1/6°  into the twins, 
 
but 5 + 1/6 – 1/12°  into the twins, 
 
i.e. 5 + 1/12°  into the twins. 
 
 
But knowing its true position at that time, we can now add the regular movement it 
underwent, namely about ¼ ° in 30 minutes of time after sunset, and so at that point the 
moon was 
 
 5 + 1/12 + ¼ °  into the twins 
 
i.e. 5 + 1/3 °  into the twins. 
 
Now at that same time when the moon was appearing 5 + 1/3° into the twins, the star 
Regulus appeared 57 + 1/6° eastward of the apparent moon.  Hence Regulus was appearing  
57 + 1/6° eastward of 5 + 1/3° into the twins, 
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i.e. 57 + 1/6 + 5 + 1/3°  east of the beginning of the twins 
 
i.e. 62 ½ °  east of the beginning of the twins, 
 
i.e. 32 ½ °  east of the beginning of cancer, the summer tropic for Ptolemy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
So in the time of Ptolemy, Regulus was 32 ½ °  east of the summer tropic. 
 
But Ptolemy has the records and calculations of Hipparchus, his predecessor who made 
similar observations 265 years earlier, according to whom Regulus was in his time 29 + ½ + 
1/3 °  east of the summer tropic. 
 
Therefore, in 265 years, the zodiac moved 2 2/3 ° east, relative to the 4 points on the ecliptic. 
 
Therefore the equinoxes precess about 1° every 100 years. 
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The modern figure is  50.26’’ a year = 1° 23’ 46’’ every 100 years, so the period is about 
25,800 years. 
 
 
 
 
 
The adjacent diagram illustrates the situation 
in Alexandria, year 2 Antonine, 9th day of 
month Pharmouthi, 5:30 pm, when Ptolemy 
made his observations by which to determine 
the distance between Regulus and the summer 
tropic. 
 
 
 
 
O = Observer 
P = Polaris 
Z = Zenith 
M = Moon, on the intersection of the ecliptic and the meridian, culminating in Twins (5 1/6 ° 
into Twins, 92 1/8 ° east of sun) 
U = Set sun, 30 minutes after sunset, about 3 1/20 ° into Fishes 
R = Regulus in Leo, 57 1/6 ° east of moon, and on the ecliptic 
F = Fall equinox 
 
 
 
PRECESSION IS ABOUT THE POLES OF THE ECLIPTIC. 
 
Now let’s develop a clearer image of this motion. 
 
Looking at the three adjacent diagrams, 
Let X = a pole of the ecliptic 
and N = the north celestial pole 
and P = Polaris 
 
For any fixed star S, the great arc XSL (down to the ecliptic) has the 
same value all the time, 24 hours a day, 10 centuries a millennium 
(strictly speaking even this is not true, since the stars do drift around; 
but they do so too slowly and imperceptibly for us to care about for 
these purposes; ten or twenty thousand years from now the “Big 
Dipper” will not look much like a dipper, but that is impossible to 
verify with naked eye observations over a few years or even over a 
hundred years). 
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But the great arc NSE (down to the equator) changes a bit over great lengths of time. 
 
 
 
The ecliptic is therefore a more permanent and principal line on the 
sphere of fixed stars than the equator is! 
 
Therefore the earth’s north pole is more abiding than the celestial 
north pole!  (Shouldn’t that give us a clue?  Doesn’t that hint that it 
is not the heavens that are moving, but the earth, and that is why the 
place called North Pole on earth always stays the same, but the spot 
in the sky called North Pole does not?) 
 
 
 
And since the great arc XSL always stays the same, that implies 
that the precessional movement of the equinoxes is about the poles 
of the ecliptic. 
 
 
 
WHERE ARE THE SOLSTICES & EQUINOXES TODAY, compared to where they were 
for Ptolemy? 
 
In Book 7 Chapter 2, Ptolemy says he observed Regulus at 32 ½ ° from the Summer Tropic, 
2 ½ ° into the Lion.  Thus the summer tropic was 2 ½ ° of Lion, plus 30° of Crab west of the 
star Regulus, and therefore was at 0° Crab.  If Ptolemy was about 50 years old at the time of 
this observation, it was about 150 A.D. 
 
In the same chapter, Ptolemy says Hipparchus observed the summer tropic 265 years earlier 
[about 115 B.C.] only 29.83° west of Regulus, and since Regulus is 2 ½° into the Lion, he 
saw the summer tropic at (29.83° – 2 ½ °) = 27.33° westward into the Crab, i.e. it was at (30° 
– 27.33°) = 2.67° Crab. 
 
A current value for this precession is 50.26’’ a year, or .013961111° a year, with a period of 
about 25,800 years. 
 Now take the current year, and subtract 150 from it, and you have about how many 
years elapsed since Ptolemy’s observation.  I will use 2012, the year in which I am writing 
this (you can figure it out yourself for the current year, of course.)  Then 2012(.013961111°) 
= the number of degrees of precession since Ptolemy up to 2012 = 28.09°.  Now the spring 
equinox was at the beginning of the fishes (or Pisces) for Ptolemy.  It has moved almost 30° 
eastward since his time, which means it is almost in the water-bearer, i.e. at the beginning of 
Aquarius.  So a little more westward precession, and we will have the “dawning of the age of 
Aquarius,” when the spring equinox passes out of Pisces and into Aquarius.  Whoopee! 
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WHO CARES, ANYWAY?  Astrology aside, what is interesting about the precession of the 
equinoxes? 
 (a)  Historically, with Hipparchus and Ptolemy, people for the first time realized that 
the movement of the sphere of fixed stars is not perfectly uniform.  Aristotle thought it was.  
So did Plato.  Aristotle in some way thought that the motion of that sphere was time itself, 
being the fastest and most uniform motion.  The sphere was the “primum mobile,” moved by 
God.  But now there is an irregularity in it, or at least a composition of motions in it.  This 
new fact had implications for Aristotle’s Metaphysics, which culminates in certain arguments 
about the gods on the supposition that the sphere of fixed stars has a single, perfectly 
uniform and eternal motion.  Later medieval thinkers posited further spheres outside the 
sphere of fixed stars, supposing that the outermost of these had a single and perfectly 
uniform motion, and that it was the true “primum mobile.” 
 (b)  Astronomically, this new fact suggests we might have something wrong.  It is 
difficult to believe that the whole universe is moving around us, but it is far more difficult to 
believe that it has a complex motion, rather than a perfectly simple and uniform one.  
Stranger still, not only does it keep changing the fixed points about which it rotates daily (i.e. 
the celestial poles), but it takes great pains to ensure that whatever these points are at the 
moment, they hover directly over the same two spots on earth—our north and south poles.  
Why would the heavens go to all that trouble? 
 (c)  Physically it poses an interesting problem.  Once we get to Copernicus, we see 
that the precession must be explained as a kind of wobble in Earth’s axis.  But why does that 
happen?  Newton was the first to explain it—it is a phenomenon of differential gravitation, 
due to the Earth’s not-perfectly-spherical shape (it is an “oblate spheroid”) and due to the 
Sun’s (and Moon’s) consequently uneven attractions of the Earth. 
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PTOLEMY 
 

DAY 21 
 

 
INTRODUCTION TO THE THEORY OF THE PLANETS 

 
 
We have seen some of what Ptolemy had to say about the fixed stars.  He had more to say 
than what we discussed—for example, he catalogued the constellations of the northern and 
southern hemispheres. 
 But he had far more to say about the wandering stars, the planets.  That is partly 
because they are closer and brighter and easier to observe, but more because they have 
special movements among the stars.  They do not keep a fixed position among the “fixed” 
stars, but wander through them over time.  Like the sun and the moon, they appear to creep 
eastward through the stars, all of them keeping within 8° or so on either side of the ecliptic.  
Unlike the sun and moon, however, the planets have other anomalies in their apparent 
movements.  They appear to stop sometimes—this is called a “station”—and then when they 
start moving again, they can appear to move backwards, that is, they appear to creep 
westward rather than eastward.  That is called “retrogradation” or “retrograde motion” or 
“regression.”  Then they exhibit another station (a westward station), and then begin 
“progression” eastward once again!  So the planets make zig-zags in the sky.  Mars, for 
instance, will go through this pattern: 
 
 •  moving eastward through the stars (progression) 
 •  stop for a while (eastern station) 
 •  moving westward through the stars (regression) 
 •  stop for a while (western station) 
 •  moving eastward through the stars ... 
 
Moreover, exactly how often they do this, and for how long (i.e. how great a regression), 
seems to be tied to the sun.  Mars, Jupiter and Saturn, for example, seem to go through their 
stations and retrograde motions when they are near “solar opposition”, that is, which is one 
a planet and the sun are on exact opposite sides of the earth, 180° apart in the zodiac.  Also, 
the size of their retrograde motion seems to depend upon where it takes place in the zodiac.  
But more on these details later. 
 
 We are skipping ahead to Book 9 of the Almagest, now, where Ptolemy begins his 
planetary theory in earnest. 
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BOOK 9 CHAPTER 1 
 
THE PTOLEMAIC VIEW OF THE WHOLE. 
 Before getting into the details of planetary theory, Ptolemy wants to give us a sense 
of the whole. 
 He is unaware of Uranus, Neptune,  and Pluto (now demoted from planet-hood), 
since these cannot be seen with the naked eye.  So he has 5 planets to explain and order, 
besides the sun and moon:  Venus, Mercury, Mars, Jupiter, and Saturn. 
 But he is not 100% sure about the order of their spheres around us.  (Just as the fixed 
stars are on a “sphere” whose spinning causes their circular motions, so too he conceived of 
each planet, and the sun and the moon, as embedded in or on a perfectly transparent sphere—
or even embedded in a sphere on a sphere, so as to produce the epicyclic motions.)  He 
knows that the moon is the lowest of all, closest to us.  One reason for this is that he is able 
to get parallax on the moon, but not on any of the other heavenly bodies.  Another reason is 
that the moon sometimes comes between us and the sun (during a solar eclipse), but the sun 
never comes between us and the moon.  Similarly, the moon comes between us and the fixed 
stars and planets, blocking our view of them, but they never come between us and the moon.  
But after that it is not so easy to say!  Which is closer to us, Mars or Venus?  Mercury or the 
Sun?  Jupiter or Saturn? 
 He does not make the order among them a priority in his work.  If he had, he might 
have started to move more toward the Copernican view, the heliocentric view.  More on that 
when we come to Copernicus.  Still, he takes a stab at the order of the planets, going out 
from us, the center of the universe. 
 
THE PTOLEMAIC ORDER OF THE SPHERES. 
 The order of celestial bodies (going outward from Earth) according to Ptolemy is 
this: 
 
 Earth 
 Moon 
 “Inner Planets” 
 Sun 
 “Outer Planets” 
 Sphere of Fixed Stars 
 
The “inner planets” are Venus and Mercury.  He is not entirely sure about the order of their 
spheres, but he seems to think the order is Venus first (right after the moon), then Mercury is 
higher up and further out. 
 The “outer planets” are Mars, Jupiter, and Saturn, in that order.  All significant 
astronomers of Ptolemy’s time agreed that this is the order of the outer planets, that they are 
further from us than Venus and Mercury, and that Venus and Mercury are further than the 
moon. 
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WHERE IS THE SUN? 
 But there was disagreement as to where the Sun falls. 
 Among Ptolemy’s predecessors, EARLIER mathematicians said it falls between the 
inner and outer planets, while LATER mathematicians said it falls between the moon and all 
the other planets. 
 In favor of the LATER ones, we never see the sun eclipsed by the inner planets (but 
the fact is they do pass in front of it; those ancient astronomers just could not observe their 
solar transits without a telescope and some special filters). 
 In favor of the EARLIER ones (whose opinion Ptolemy prefers), there is a natural 
division between the 2 planets that always stay near the sun on the ecliptic, and the 3 that 
don’t.  So he wants to put the sun between them. 
 
NO CLEAR IDEA THAT THE PLANETS CIRCLE THE SUN. 
 Ptolemy seems to allow for the possibility that the inner planets make epicycles 
which do not encompass the sun, but are just closer to us than the sun. 
 This is odd, since they go back and forth on either side of the sun, strongly suggesting 
they encompass the sun! 
 
 
 
THE PTOLEMAIC UNCERTAINTY. 
 
 
He can’t be sure about his order of 
distances because no “parallax” is 
detectible to the naked eye. 
 
“Parallax”, as we noted back in Day 
20, is the difference in where a thing appears against some background from two different 
locations.  Parallax is useful for determining relative distances (e.g. on a background of fixed 
stars, the planet with the greater parallax is closer).  (Try opening and closing alternate eyes 
while looking at two of your fingers held at different distances from your eyes, and note how 
much each one seems to “jump” with reference to the wall beyond it.) 
 If 2 bodies, A and B, are sufficiently close to earth, and locations C and D are 
sufficiently far apart on the earth, then (as long as observers at C and D can make 
simultaneous observations of A and B) we will be able to get parallax on both bodies, and by 
seeing which is greater we will know which is closer.  Comparing notes, observers C and D 
might determine that their simultaneous observations of A and B find them appearing at 
different places among the fixed stars.  Now the line from D to B is really from D to a fixed 
star against which B appears, and the line from C to that same fixed star will be parallel to 
DB (since the earth is as a point to the heavens—see Day 2).  So the angle between CB and 
the line from C parallel to DB is known.  But that is equal to the angle CBD, the angle of 
parallax.  If this is done for two different bodies, A and B (and they do not have to be 
observed at the same time—just the observations of B must be simultaneous, and again those 
of A must be simultaneous, but there is no need to observe A and B simultaneously), and the 
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angles of parallax are compared, the one with the greater angle of parallax is nearer to the 
earth. 
 But if bodies A and B (for example) were too far away, CA would be sensibly 
parallel to DA, and CB to DB, and we get no triangles to work with, and no angles of 
parallax to compare. 
 (Parallax on Mars was first obtained by Cassini in the time of Newton, and that was 
the first time, historically, that we were able to get absolute distances to the heavenly bodies.  
But we obtain the relative ones before that, even with Kepler.  More on these things later.) 
 
 
 
 
CHAPTER 2 
 
 
THE GENERAL GOAL OF PLANETARY THEORY. 
 In Chapter 2 of Book 9 of the Almagest, Ptolemy explains the goal, the necessity, the 
difficulty, and the mode of proceeding of his planetary theory to follow. 
 (1)  The GOAL is to explain the double anomaly of the planets accurately, i.e. to 
produce “astronomically-correct” (uniform circular motion only, please!) models which will 
produce exactly what the appearances are. 
 (2)  The NECESSITY of doing so is due to the fact that it is really worthwhile and no 
one prior to Ptolemy had yet succeeded. 
 (3)  The DIFFICULTY of doing so is due to the fact that there are 2 anomalies going 
on at once for each planet “so it is very hard to determine what belongs to each”, and again 
because we need a long record of observations, and very accurate ones, but many recorded 
observations are not very accurate, but are “thrown together carelessly and grossly”, and 
many things are difficult to observe accurately, such as the stations (the exact moment they 
occur). 
 (4) The MODE of proceeding he will adopt is accordingly as follows: 
  (a)  He will use Hipparchus’s observations, because Hipparchus was a serious 
astronomer, no slouch.  In general, he will use “only those observations which cannot be 
disputed,” e.g. when a planet was right on top of a fixed star, so its locale was absolutely 
clear. 
  (b)  He will use certain oversimplifications, e.g. assuming things are all in one 
plane, when there are slight latitudinal differences, so long as these simplifications are not 
too false to make a big difference. 
  (c)  He will use certain assumptions suggested by trial and error but 
impossible to prove by some simple observation, i.e. he will allow things whose consonance 
with appearances will be clear, although how we discovered them is not at all clear. 
  (d)  He will use models with properties as demanded by the appearances, i.e. 
he will not demand total uniformity of model from planet to planet, e.g. that every epicycle 
should have the same tilt relative to its deferent. 
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THE DOUBLE ANOMALY. 
 Ptolemy does not describe this clearly and succinctly.  Ptolemy only says that one 
anomaly is tied to the sun, the other to the zodiac—hence the names “heliacal anomaly” and 
“zodiacal anomaly.” 
 But the zodiacal anomaly is an inequality or non-uniformity in the heliacal, so the 
heliacal must be understood first.  And what the heliacal is for inner planets is not the same 
as for outer ones, exactly!  So there are in a way 4 kinds of anomaly, 2 for each kind of 
planet (inner and outer), and they are analogous but not entirely identical.  Let’s describe 
these anomalies now, since the whole point of what is to follow will be to find models which 
will explain these anomalies in the apparent movements of the planets. 
 
 
DISTINCTION BETWEEN INNER AND OUTER PLANETS. 
 The “inner planets,” Mercury and Venus, are never found more than a certain angular 
distance from the sun.  They have maximum or “greatest elongations” from the sun, either 
on the western side or on the eastern side of the sun.  By contrast, the “outer planets,” Mars, 
Jupiter, Saturn, can be any angular distance from the sun.  This is the big distinction between 
inner and outer planets. 
 (The cause of this, in truth, is clear.  Our own orbit encompasses those of Venus and 
Mercury, while it is encompassed by those of Mars, Jupiter, and Saturn.  This is another 
sneak peek at Copernicus.  For many of us, THEORY is more familiar than 
APPEARANCES, since we have been told certain things all our lives; so we can often work 
from the theory back to what the appearances must be, if we don’t know or can’t remember.) 
 Mercury’s greatest elongations from the sun are smaller than those of Venus, which 
gets a little further from the sun.  Incidentally, this makes Mercury a pain to observe.  It is so 
close to the sun that it is generally visible only right after sunset or just before sunrise 
(generally when the sun is up it is too bright to see Mercury with the naked eye). 
 Again, all 5 planets have ROUGHLY the same orbital plane, i.e. they move in 
longitude pretty much around the ecliptic (or in the zodiac, the fat version of the ecliptic 
made to contain their orbits). 
 Obviously, if Venus & Mercury are sometimes tied to the sun, sometimes on one side 
of it, other times on the other, then they must be seen at times ahead of and at other times 
behind the sun on the ecliptic—hence they are MORNING STARS and also EVENING 
STARS: 
 Eastern Elongation = Evening Star  (planet is seen after sunset) 
 Western Elongation = Morning Star (planet is seen before sunrise) 
 
THE HELIACAL ANOMALY FOR INNER PLANETS, then, is just this:  since they get 
ahead of and behind the Mean Sun (the Mean Sun is never further away from the aApparent 
than the solar greatest anomalistic difference, which is only 2° 23’, whereas Venus can get as 
far away from the Mean Sun as about 49°), therefore they speed up and slow down in their 
motion around us, which is an anomaly. 
 It is called “HELIACAL” because it is a motion back and forth on either side of the 
Mean Sun—that is the uniform motion around us which the irregular inner-planetary motions 
seem to be tied to.  They can speed up and slow down compared to the Mean Sun, but only 
by so much, and cannot get too far away from it in speed or distance. 
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 In fact, what is the AVERAGE SPEED of Venus going to be around us?  That of the 
Mean Sun, of course! 
 And what is the AVERAGE SPEED of Mercury going to be around us?  That of the 
Mean Sun, of course! 
 But each gets ahead of and behind it in a periodic way, hence speeding up and 
slowing down, and reaching a GREATEST ELONGATION from the Sun, then disappearing 
into it (in front of or behind it, in truth!), and appearing again on the other side and making 
an opposite greatest elongation. 
 So it goes from GWE (Greatest Western Elongation) to GEE (Greatest Eastern 
Elongation) and back again. 
 And ONE CYCLE of the heliacal anomaly is just that:  the movement (or time) from 
one GWE back to the next GWE, or else from one GEE back to the next GEE.  
 Note that this cyclic motion right away suggests that Venus is on an EPICYCLE.  
(Or, more correctly, it suggests that Venus is orbiting the Sun!) 
 And this epicyclic motion happens to be of the right speed and direction that Venus 
also appears to make stations, and to move backwards sometimes in the zodiac.  But since it 
has greatest elongations, these are more telling and striking, and we work out our Venus 
theory mostly from those. 
 
 
 
ZODIACAL ANOMALY FOR INNER PLANETS. 
 

 So the time from one GEE to the next GEE is one cycle 
of the heliacal anomaly, which takes more than 1 year for 
Venus, namely about 19 months. 
 ZODIACAL ANOMALY:  But it turns out there is not 
just one value for a GEE (or GWE) for Venus.  This value is 
bigger or smaller depending on where the sun is on the ecliptic 
when Venus reaches its maximum elongation.  The reason for 
this (we hypothesize) is that Venus’s epicycle (or, cheating, its 
orbit around the sun) itself moves on a circle (deferent) around 
us but we are not at the center of that circle, and so Venus’s 
epicycle appears larger or smaller from where we are, 
depending on where in the ecliptic it is appearing.  So the SUM 
of the GEE and GWE will be the same, for Venus, when the 

mean sun is at a given point in the ecliptic, but that sum will vary for different spots in the 
zodiac.  And the maximum sum is directly opposite where the minimum sum occurs, in the 
ecliptic. 
 This variation of the apparent heliacal anomaly is called the “zodiacal anomaly.” 
 And ONE CYCLE of the zodiacal anomaly WOULD be the time from a greatest 
elongation in some part of the zodiac back to another greatest elongation (of the same kind) 
at that same place in the zodiac, except that the next time it is in that part of the zodiac the 
planet might not happen to be at its greatest elongation from the sun.  In fact, if the speeds on 
the epicycle and on the deferent are incommensurable, you will never exactly get another 
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greatest elongation (of the same kind) in that part of the zodiac!  So “one cycle of zodiacal 
anomaly” means the same thing as “one time of the epicycle around the eccentric deferent”. 
 
 
 
HELIACAL ANOMALY FOR OUTER PLANETS. 
 For the outer planets (which are tied to the movement of the sun in a different way, 
although they can get any angular distance away from the sun): 
 HELIACAL ANOMALY = when almost directly opposite the sun, the planet stops 
its eastward motion in the sky, and we get a station.  When the sun becomes even more 
directly opposite, the planet appears to move westward in the sky, a retrogradation.  As the 
sun moves on, the planet again appears to stop, and we have another station, and finally it 
moves eastward once more.  So it makes a ZIGZAG in the sky, whenever it goes through 
solar opposition.  This also strongly suggests an EPICYCLE.  The planet appears to zig-zag, 
and also to stop at times, because the movement of the planet on its epicycle sometimes 
cooperates with, sometimes fights against, its general motion around the deferent—and 
sometimes the two motions exactly cancel each other out in the appearances to us, and hence 
we get a station. 
 The time from a first station (prior to retrogradation) back to the next corresponding 
station (prior to next retrogradation) is ONE CYCLE of heliacal anomaly; for example, the 
time from an eastern station to the next eastern station. 
 
 
ZODIACAL ANOMALY FOR OUTER PLANETS. 
  

The ZODIACAL ANOMALY for outer planets refers to the fact that the apparent 
speed of retrogradation, and how long it takes, and how great a length in the sky for which it 
retrogrades etc., varies for different positions of the mean sun on the ecliptic.  So again, this 
suggests an eccentric deferent. 
 
 
 
CHAPTER 3 
 
Recall that the way we gained insight into the Sun’s eccentric path, and the way we 
determined where it “really” is on that path around its own center, was first of all by 
determining the period of the sun’s eastward motion.  We need to do something similar with 
the planets.  We need to have some notion about what regular motions we think they are 
accomplishing on certain circles, and then a way of determining the periods of those 
motions.  To that end, we will distinguish “mean movement in longitude” from “mean 
movement in anomaly”, and we will determine the “least periodic joint returns”, for each 
planet. 
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WHAT ARE MEAN MOVEMENTS IN LONGITUDE & MOVEMENT IN ANOMALY? 
 
Mean Movement in Longitude = uniform motion of epicycle’s center on deferent 
Mean Movement in Anomaly = uniform motion of star on epicycle 
 
Note:  Since the deferent is going to be eccentric for each planet, the mean motion of the 
epicycle in longitude is measured around the center of the deferent, not around us.  (Actually, 
we will soon introduce still another point around which equal angles are swept out in equal 
times, the equant.) 
 
 
WHAT IS A “LEAST PERIODIC JOINT RETURN”? 
 This means the shortest time required for some whole number of cycles of anomaly 
AND some whole number of cycles of longitude to be completed together. 
 Let’s take an imaginary example.  Suppose planet P is moving on an epicycle, and 
the period of its own motion around the epicycle is 3 years.  Every 3 years it goes around its 
epicycle exactly once.  But the period of its epicycle around its deferent is 5 years.  Every 5 
years its epicycle goes around the deferent exactly once.  Well, then, starting at any precise 
moment, when the star is someplace on its epicycle and the epicycle is someplace on the 
deferent, how long will it be before the star and epicycle are both back in those same places 
again?  15 years.  In that time, the star will have gone around exactly 5 times (since its period 
is 3 years), and so it will be back at the same place on the epicycle, and again the epicycle 
will have gone around exactly 3 times (since its period is 5 years), and so it will be back at 
that same place on the deferent.  But in any shorter amount of time, at least one of the two 
motions will not be back at the same spot.  We are looking for a least common period, as it 
were, of the two motions. 
 Since 15 is the least common multiple of 3 and 5, this technique will work so long as 
there is a common multiple of the two periods.  But if the two periods have no common 
multiple, e.g. √3 and 5 do not, then there will be no exact least periodic joint return, although 
if you wait long enough you can get as near as you please to a joint return.  So if the 2 
periods are INCOMMENSURABLE, and the two motions begin at some place together, they 
will never again be at those same two points at the same time, lest the speeds become 
commensurable.  And where is it written that the period in longitude and in anomaly must be 
commensurable?  Well, that is why Ptolemy says “that is, VERY NEARLY JOINT.”  We get 
some decent whole-number approximation. 
 If in the same time the two movements return back to their same starting points, then 
each accomplishes a whole number of cycles in the same time, and hence their speeds would 
have to be commensurable.  So if incommensurable, they never line up again in the position 
they were in when they both began.  They never have the same relative position twice. 
 
 
WHY DO WE CARE ABOUT THESE? 
 Recall that the motion of the planets appears irregular, but we believe it is truly 
regular and circular, or composed of such motions.  How do we get a hold of their regular 
motions, if they are appearing to move irregularly?  By getting their PERIOD on this or that 
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circle (which circle is one that we hypothesize based on the suggestiveness of the 
appearances, e.g. an epicycle). 
 That is, we cannot observe the uniformity at all times, but if we suppose there really 
is uniformity of motion, then we know that the time from HERE back to the SAME PLACE 
on its circle must always be the same, and that will give us the UNIFORM SPEED (in 
angular velocity). 
 So we just need to know when a planet is “back to the same place,” e.g., on its 
epicycle, or when the epicycle is back to the same place in the zodiac. 
 But here’s the problem:  We cannot see the center of the epicycle, or anything at all 
except the star itself, which appears to move irregularly.  So how do we know, for instance, 
that “the star is back where it was on the epicycle”? 
 We can (for Venus) measure the time from GEE to the next GEE, and this might 
tempt us to say “there, the star moved 360° in that time, so we know the period in anomaly.”  
But did it really go 360°?  Not quite, since at the next GEE it was closer to us, or further, 
which changes where the POINT OF TANGENCY hits the epicycle. 
 (Similarly for stations for the outer planets.) 
 So what we really need is to find when the star is not only at a GEE, but when it is at 
a GEE back in the same part of the zodiac, which means not only is the star back at the same 
place on the epicycle, but also the epicycle is back at the same place on the deferent; i.e., we 
need a JOINT RETURN. 
 



 155 

 
 
 

PTOLEMY 
 

DAY 22 
 

 
PERIODIC JOINT RETURNS; 

THE EQUANT 
 
 
 
We want to get the least periodic joint returns for the 5 planets—that is, we want to be able 
to say, for a given planet, the number of times the epicycle goes around the deferent in the 
same time that the star goes around the epicycle some whole number of times (and we want 
to express this in least numbers).  We will put up with some slight inequality, though, since 
the two speeds (of star and of epicycle) might be such that they never complete whole 
numbers of cycles in exactly the same time (as we noted in Day 20), or else they might do 
so, but the smallest number of times the epicycle goes round in the same time that the star 
completes some whole number of cycles on the epicycle is 6 trillion.  We don’t have time to 
wait around for that!  So Ptolemy instead gives us “very nearly joint returns” for the 5 
planets, as follows: 
 
 
 
  SUN   LONGITUDE   ANOMALY 
  # times   # times epicycle’s  # times star 
  mean sun  center orbits deferent  orbits epicycle 
  orbits earth 
 
Saturn  59 (+ 1 45/60 days) 2 (+ 1 43/60 °)   57 
 
Jupiter  71 ( – 4 54/60 days) 6 (+ 4 50/60 °)   65 
 
Mars  79 ( + 3 13/60 days) 42 (+ 3 10/60 °)   37 
 
Venus  8 ( – 2 18/60 days) 8 ( – 2 15/60°)   5 
 
Mercury 46 ( + 1 2/60 days) 46 ( + 1°)   145 
 
 
 
In other words, during the time it takes the mean sun to go around us 59 times (plus a little 
bit), Saturn’s epicycle goes around its deferent 2 times (plus a tiny bit) and Saturn itself goes 
around its epicycle 57 times (precisely).  And so on with the other entries. 
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What kinds of observations would Ptolemy have had to make in order to derive these 
numbers?  In the case of an inner planet, like Venus, he could look at tables of data (of his 
own, or from Hipparchus and others) correlating where Venus was appearing in the zodiac 
and the date and what its elongation from the mean sun was at the time.  If we look at such 
tables, we will notice that the value of Venus’s greatest elongation from the sun varies 
depending upon where it is in the zodiac.  And it is not the case that if it is at a greatest 
western elongation from the sun in place X in the zodiac, then a year later, when it is at that 
place in the zodiac, it will again be at a greatest elongation.  Rather, we have to wait 8 years.  
Then it will be at a greatest western elongation again, and in pretty much the same part of the 
zodiac, and the size of that elongation will be what it had been 8 years before.  But during 
that time, we can see that the mean sun went around us 8 times (of course), and so Venus’s 
epicycle, which ties Venus to the mean sun and hence itself has the same speed as the mean 
sun also went around us 8 times, and we can count the number of times that Venus went 
from greatest western elongation back to greatest western elongation in those 8 years, i.e. its 
cycles of anomaly, namely 5 times.  Let that suffice for an understanding (somewhat 
oversimplified) of how to derive the table of periodic returns above from the raw 
observations. 
 
NOTE THE OTHER PATTERNS:   S = L,  and  S = L + A. 
 If we get rid of the “plus a little” or “minus a little” in the table, and present a 
simplified version of it, we have: 
 
  SUN   LONGITUDE   ANOMALY 
  # times   # times epicycle’s  # times star 
  mean sun  center orbits deferent  orbits epicycle 
  orbits earth 
 
Saturn  59   2    57 
 
Jupiter  71   6    65 
 
Mars  79   42    37 
 
Venus  8   8    5 
 
Mercury  46   46    145 
 
We have already seen that the number of solar cycles, S, equals the number of longitudinal 
cycles (times the epicycle goes round), L, for inner planets.  But what about the outer 
planets?  Do you notice something about their numbers? 
 
  59    =  2  +  57 
 
  71    =  6  +  65 
 
  79    =  42  +  37 
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For the outer planets, for some reason, the number of solar cycles is equal to the sum of the 
number of longitudinal cycles plus the number of cycles of anomaly—in other words,   S  =  
L  +  A.    A remarkable coincidence! 
 For the inner planets, too, it is a coincidence that  S = L.  There is no reason why 
these things should be so in Ptolemy—they just are.  They are cosmic coincidences which 
need not be.  But Ptolemy is aware of them.  He is so aware that  S = L, for instance, that the 
entry on the table for Venus’s mean movement in longitude (i.e. the motion of the center of 
its epicycle) in 1 day is exactly the same value as that for the mean sun.  In fact, that whole 
table is just the table of the mean sun’s movement reproduced. 
 S = L follows for Ptolemy only because the inner planets are each tied to the sun, and 
hence their epicycles must have the same average speed as the sun, i.e. the speed of the mean 
sun.  But why should that be, if they do not orbit the sun, but make epicycles in front of it, 
closer to us? 
 S = L + A  is even more arbitrary-sounding right now.  But there it is! 
 
 
GENERATING THE TABLES OF PLANETARY MEAN MOVEMENTS IN 
LONGITUDE AND ANOMALY. 
 As we did with the sun, so we do now with the planets.  If you tell me how far the 
epicycle moves in longitude in any amount of time, then, since I know it is uniform, I can tell 
you how far it moves in any other time, or, conversely, given how far it has moved, I can tell 
you how long it took. 
 So too with the mean motion in anomaly, i.e. the uniform motion of the star on the 
epicycle. 
 
 
 
CHAPTER 5 
 
 
DETERMINATION OF THE GENERAL PLANETARY HYPOTHESIS. 
 
We have already seen that the planetary phenomena are highly suggestive of epicycles on 
eccentric deferents.  And we have also seen how to determine the relative speeds of the star 
on the epicycle and of the epicycle on the deferent by means of the least periodic joint 
returns.  But are we talking about same-direction epicycles, or opposite-direction epicycles?  
Do the star and epicycle rotate in the same directions about the centers of the epicycle and 
deferent respectively?  Or do they go in opposite directions? 
 If we are to explain the planetary phenomena by epicycles on eccentric deferents, we 
must do so by means of SAME-DIRECTION EPICYCLES.  The following explanation will 
bring out the reason for this. 
 
 First, recall that the “greatest passage” of a star means its fastest apparent speed, or 
the moment dividing the time in which it was speeding up from the time in which it will be 
slowing down, while the “least passage” of it means its slowest apparent speed, or the 
moment dividing the time in which it was slowing down from the time in which it will be 
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speeding up.  The “mean passage” of a star means when it appears to be moving with its 
mean speed (e.g. with the uniform speed which its epicycle actually has around the center of 
the deferent), or, alternatively, the moment dividing the time in which it had a speed less 
than the mean speed from the time in which it will have a speed greater than the mean speed 
(or else the moment dividing the time in which it had a speed greater than the mean speed 
from the time in which it will have a speed less than the mean speed). 
 
Let G = Greatest passage 
 M = Mean passage 
 L =  Least passage 
 
 In the case of all 5 planets, for the heliacal anomaly, 
 
 Time [G to M]   >  Time [M to L] 
 
and therefore we are dealing with a SAME-DIRECTION EPICYCLE, where greatest 
passage is at apogee. 
 
In the case of all 5 planets, for the zodiacal anomaly, 
 
 Time [L to M]   >  Time [M to G] 
 
and therefore the ECCENTRIC (deferent) will do to explain that anomaly. 
 Ptolemy is very terse about the observations which justify these claims.  The strange 
thing is that he is separating the appearances for the two anomalies of a single planet, 
whereas a planet has only one set of appearances, not two.  It seems he is assuming that the 
planet is moving on an epicycle, and then isolating the appearances due to the planet’s 
motion on the epicycle, and again isolating the appearances due to the epicycle’s motion on 
the deferent.  Let’s see briefly how he does this for the heliacal and zodiacal anomalies. 
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ISOLATING THE HELIACAL 
ANOMALY.  At some time the planet is 
seen making a greatest passage when it is 
against some spot, X, in the zodiac.  Some 
whole number of cycles of longitude later, 
the center of the epicycle, C, is back at the 
same spot—and we can know when that is 
the case, since we know the period of C 
around the center of the deferent, F, thanks 
to our periodic joint returns.  Very well, 
the next time we know C is back at the 
same spot it was in when we observed the 
planet in greatest passage against X in the 
zodiac, we observe the planet again, and this time we see it moving with its mean speed 
(which is the same as the speed of C around F, which we know by the periodic joint returns).  
When it is at mean passage, it is viewed against Q in the zodiac.  We do this again still later, 
and we observe the planet moving with its least speed, and it is once again viewed against X 
in the zodiac.  Since we are viewing the apparent speed of the planet (over a couple of nights, 
so that the epicycle does not move much) for one location of the epicycle, the effect of the 
zodiacal anomaly is removed, and all the differences in apparent speed are due to the 
direction in which the planet is moving on the epicycle.  And although the planet does not go 
from its greatest passage to its mean passage without the epicycle moving meanwhile, we 
know the rate at which the star really moves on the epicycle (thanks to the periodic joint 
returns again).  Hence after observing the planet at greatest passage on one date, and then at 
mean passage at another, and then at least passage at still another (at which dates C is back at 
the same spot on the deferent), it is just a matter of number-crunching to see that the time 
from greatest to mean is greater than the time from mean to least.  And that is a property of 
the SAME-DIRECTION EPICYCLE.  Hence we must employ that simple hypothesis in 
order to explain the heliacal anomaly. 
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ISOLATING THE ZODIACAL ANOMALY.  When the center of the epicycle, C,  is 
“appearing” at some place in the zodiac, Z (although we can’t really see it),  let the planet be 
at  P on the epicycle.  Observe its speed (over a few nights chart its longitudinal progress or 
regress).  When will the planet next be at that same spot on the epicycle, P?  We know the 
answer from our tables of the planet’s regular movement in anomaly (i.e. on its epicycle), 
thanks to our periodic joint returns.  When that time has elapsed, we observe the planet’s 
speed again.  We keep doing this, and soon (well, actually after a long time) we have a table 
of the planet’s apparent speeds throughout the zodiac when it is on a certain point P on the 
epicycle.  That means all the differences in its apparent speeds will be due not to its motion 
on the epicycle (which has been removed from these 
considerations) but to some other irregularity in its 
motion around us.  Doing as we did with the heliacal 
anomaly a moment ago, we find that the time from 
least passage to mean passage is always greater than 
the time from mean to greatest.  This means we can 
account for this apparent irregularity of speed by an 
eccentric circle.  So we place our same-direction 
epicycle upon an eccentric deferent. 
 NOTE:  Any slight inaccuracy in our table of 
mean motions is too slight to be relevant to the crude 
inequality Ptolemy needs, i.e. concerning the time [L 
to M] and time [M to G]. 
 
 
DIFFICULTIES.  THE EQUANT. 
But things won’t be so simple as an eccentric deferent!  Ptolemy notes this in Book 9 
Chapter 5.  There are two principal complications which will force us to make our basic 
model for planetary motion a bit more sophisticated: 
 [1]  The lines of apsides for the planets precess eastward with the speed of the 
precession of the equinoxes (here’s a bit of a spoiler:  this phenomenon which Ptolemy notes 
is just caused by the rotation of earth’s axis, too.  Real precession of perihelion for a planet 
completes a back-and-forth cycle once every 100,000 years or so, and is a small oscillation.  
The planetary apehelia are basically at rest; so much so that Newton refers to “the resting of 
the aphelia” as an astronomical phenomenon). 
 [2]  The epicycle for each planet is carried around a circle with one center, but the 
center of uniform motion is another point (which I will call the “equant” or equalizing point). 
 As Ptolemy puts it:  The epicycles’ centers are borne on circles equal to “the 
eccentrics effecting the anomaly” [i.e. the equant circles] but described about “other centers” 
[i.e. the centers of the eccentric deferents], and these “other centers” [i.e. the centers of the 
eccentric deferents] in the case of all except Mercury [which is more complex] bisect the 
straight lines between the “centers of the eccentrics effecting the anomaly” [i.e. the centers of 
the equant circles] and the center of the ecliptic [us]. 
 That is characteristically obscure of Ptolemy.  Let’s see if we can get more clarity 
about this complication he is describing.  A diagram might help things: 
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THE GENERAL PLANETARY HYPOTHESIS. 
 
E = us, earth, the center of the ecliptic (a great circle on the celestial sphere) 
D = center of the deferent for a planetary same-direction epicycle 
Q = center of uniform motion for C, center of the epicycle [i.e. QC sweeps out equal angles 

in equal times around Q, not around D, although C always rides on the circle around 
center D] 

QD = QE 
(I have exaggerated the eccentricity in the figure.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There is something eerily reminiscent of an ellipse in this diagram!  In an elliptical orbit for a 
planet there will be two foci and a geometric center right between them.  But more on that 
when we come to Kepler. 
 C, the center of the epicycle, is called the MEAN PLANET. 
 The RATIOS of speeds and of lengths in the figure will differ from planet to planet, 
and Ptolemy will be determining these.  MERCURY has special problems which Ptolemy 
addresses, but we will stick to the less complicated planets.  We will look at one inner planet, 
Venus, as far as the question “What are the ratios?” is concerned; and we will look at one 
outer planet, Saturn, as far as the question “Where do stations occur?” is concerned. 
 In the case of an INNER PLANET, where QC moves around Q with the speed of the 
mean sun, Ptolemy will assume that the line from E (Earth) out to the mean sun is always 
parallel to QC.  (To get the proportions right, we would have to shrink the eccentricity quite 
a bit, and maybe grow the epicycle; in the case of Venus, the line joining Earth to the mean 
sun will always pass through the epicycle, almost through its center; and the apparent sun 
very nearly appears in line with the center of the epicycle!) 
 In the case of an OUTER PLANET, Ptolemy assumes that the line joining C to the 
planet (i.e. the epicyclic radius drawn to the star) is always parallel to the line joining E to 
the mean sun (i.e. from us to the mean sun). 
 In either case, if the lines were EVER parallel, they would always be parallel.  But 
that they were parallel at any time in the past (or will be at some time in the future) is not 
known, or not well known, by naked-eye astronomical observation.  But it certainly keeps 
things simple. 
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REMARK ON THE EQUANT. 
 
To get a sense of how the equant works, you could make a circular track for a marble in a 
piece of plywood, and rotate an arm uniformly around some point other than the geometric 
center of the circle (but inside the circle).  You will see the marble speed up and slow down 
in its circular groove. 
 This mechanism is a bit of a shift away from the ancient astronomical ideal, from the 
“astronomer’s axiom” that the heavenly bodies move uniformly on perfect circles.  Until we 
introduced this idea of an equant point, we had stars moving on perfect circles with uniform 
speed around the centers of those circles.  That had a nice simplicity to it.  But now we are 
divorcing the circular path that the planet moves on from the center around which it sweeps 
out equal angles in equal times!  This will later scandalize Copernicus, who refuses to accept 
equants.  Kepler (still later) loves equants, at least at first.  But they will eventually get 
replaced by “the empty focus,” in one way, and by the “full focus,” the sun, in another way 
(with uniform area-velocity, as we shall see). 
 The need to posit an equant point will become clearer later.  For now, Ptolemy is just 
preparing us for the idea, and I will generally include one in the diagrams. 
 
 
 
IGNORING LATITUDINAL DIFFERENCES. 
 Ptolemy will be ignoring differences in latitude, since they make so little difference 
in longitudes. 
 
THE “MICKEY MOUSE” PROPOSITION. 
 In Book 9 Chapter 6 of the Almagest, Ptolemy presents an 
argument which is needed later to find Venus’s apogee in Book 10.   
It is not of great interest in itself, and might be called an over-
elaboration.  It is really a matter of symmetry.  The proposition is as 
follows.   
 
 
 
 
 

Given:  Venus’s eccentric deferent, line of apsides AEC 
 G = center of uniform motion (equant point) 
 F = eye 
 arcAB = arcAD (or ∠AGB = ∠AGD) 
 FL & FM are tangents to the epicycle at positions B and D 
 

Prove:  ∠GBF = ∠GDF 
 (angles of zodiacal anomalistic difference) 
 ∠BFL = ∠DFM 
 (greatest elongations from the mean planet) 
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Draw:  EN perpendicular to DGK 
 EX perpendicular to BGH 
 
 
Now  ∠XGE = ∠NGE  [bc AGB = AGD, bc arcAB = arcAD] 
and  ∠GXE = ∠GNE  [both right] 
and  EG is common 
so  EN = EX   [rGXE = rGNE] 
so  KD = BH   [equidistant from center] 
so  ND = XB   [halves of KD & BH] 
minus  NG = XG   [equal bc rGXE = rGNE] 
so  GD = GB   [remainders] 
but  ∠DGF = ∠BGF  [supplements to AGD & AGB] 
and  GF is common 
so  BF = DF   [since rBGF = rDGF] 
so  ∠GBF = ∠GDF 
 
But  BL = DM   [radius of epicycle] 
and  ∠BLF = ∠DMF  [both right] 
and  BF = DF   [proved above] 
so  rBLF = rDMF  [1.47] 
so  ∠BFL = ∠DFM 
 
Q.E.D. 
 
So, given equal angles on opposite sides of the line of apsides, we have proved that the greatest 
elongations (i.e. GEE on one side, GWE on the other) are equal. 
 
 
 
QUESTIONS about the diagram: 
 
Is BG parallel to LF? 
 No.  BG is a line moving uniformly 
around G, and so it is always parallel to the line 
out to the mean sun S (for an inner planet). 
 

 
Is L on the deferent? 
 No, not necessarily.  But since F is not 
the center of the deferent, it is not impossible 
for L to be on the deferent. 
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PTOLEMY 
 

DAY 23 
 

 
VENUS’S LINE OF APSIDES; 

THE NEED FOR THE EQUANT 
 

 
 
In Almagest 10.1, Ptolemy proposes a demonstration concerning Venus’s line of apsides.  
The goal is to find the orientation in the ecliptic of Venus’s line of apsides, i.e. where its 
perigee and apogee occur in the ecliptic.  The center of its deferent and the center of its 
uniform epicyclic motion (“equant point”) will also lie along the same line. 
 
Ptolemy thinks Theo the mathematician has good data, and relies on him.  Anyway, the 
observations are of GEE (Greatest Eastern Elongation from the mean sun) and GWE 
(Greatest Western Elongation from the mean sun) for Venus, which he will use in order to 
find the line of apsides.  From the converse of the “Mickey-Mouse” proposition back in Day 
22, we see that when a GEE is equal to a GWE, these lie equal angles away from the line of 
apsides.  So we just bisect, and that gives us the line of apsides. 
 (Note:  due to conflicting influences of angle and distance, it might be possible to get 
several different GEEs at different times of year that are all the same, with unequal ones in 
between, and likewise for GWEs.  But even if this is true, they would still have to be 
symmetrical, e.g. the 3 identical GEEs on one side of the line of apsides would occur at equal 
angles from it as 3 identical GWEs on the opposite side.  So we can still just bisect, as long 
as we get enough data and see the symmetry.) 
 
THE OBSERVATIONS. 
 
Theo gives us a GEE for 16 Hadrian, Pharmouthi 21-22, when Venus was 1.5° within the 
Bull.  At that time the mean sun was 14.25° within the Fishes.  So the GEE at that time was 
47.25°. 
 
Ptolemy observed a GWE for 14 Hadrian, Thoth 11-12, when Venus was 18.5° within the 
Twins, and the mean sun was 5.75° within the Lion.  So the GWE at that time was 47.25°. 
 
Ptolemy notes that the members in this particular pair of GEE and GWE are equal, and hence 
symmetrically distant from the line of apsides for Venus.  We bisect the angle between the 
locations of the mean sun during these elongations, i.e. 14.25° within the Fishes, and 5.75° 
within the Lion, and that gives us a line about 25° within the Bull and 25° within the 
Scorpion.  There’s our line of apsides. 
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Ptolemy then repeats the procedure, using another pair of GEE and GWE that are equal, just 
to confirm his results, and he does indeed get the same result. 
 
 
In Almagest 10.2, Ptolemy determines: 

 
1. Which end of its line of apsides Venus’s apogee is on 
2. The size of Venus’s epicycle relative to its line of apsides 
 
This is fairly easy.  The epicycle will appear larger when it is at the perigee-end of the line of 
apsides, and smaller at the apogee-end.  Hence the greatest elongations will be larger at the 
perigee-end.  So we just have to find times when Venus is at its greatest elongation and the 
mean sun is at the opposite ends of the line of apsides. 
 So if the line of apsides passes through 25° into the Bull, and 25° into the Scorpion, 
how great are the greatest elongations which occur when the mean sun is in those places? 
 
Ptolemy says that when the mean sun was (25 + 2/5)° within the Bull (close enough), Venus 
was (10 + 3/5)° in the Ram, hence west of the sun (hence a Morning Star), hence it had a 
GWE = (44 + 4/5)°. 
 
Ptolemy then says that when the mean sun was 25.5° within the Scorpion (close enough), 
Venus was 12 + ½ + 1/3 ° within the Goat, hence east of the sun (hence an Evening Star), 
hence it had a GEE = 47.3°. 
 
Obviously, then, the “Scorpion” end of our line of apsides is the perigeal end for Venus, and 
the “Bull” end is the apogeal end. 
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THE MAGNITUDE OF THE EPICYCLE 
A.K.A.  “THE BICYCLE PROP” 
 
Here we are seeking the size of Venus’s epicycle, i.e., how big it is relative to the deferent, 
and also its eccentricity. 
 

 
 

Given: Circle ABC is Venus’s eccentric deferent with center D 
E is the center of the ecliptic 
A is Venus’s apogee 
C is Venus’s perigee 
Epicycle at A, EF tangent 
Epicycle at C, EG tangent 
 

Find: Ratio of  DE : AF : AD 
 
 
 
 
 

Well,  ∠AEF = greatest elongation at apogee 
so  ∠AEF = 44 + 4/5°  (observed in Ch. 2, paragraph 2, end) 
so  arc AF = 89 + 36/60° (∠AXF = 2∠AEF, circle around rAEF) 
so  AF = 84P 33’  (by Table of Chords, if AE = 120) 
 
 
 
 
 
Again,  ∠CEG = greatest elongation at perigee 
so  ∠CEG = 47 + 1/3° (observed in Ch. 2, paragraph 3) 
so  arcCG = 94° 40’ (∠CQG = 2∠CEG, circle around rCEG) 
so  CG = 88P 13’  (by Table of Chords, if CE = 120) 

 
 
 
 
Thus  CG : CE = 88P 13’ : 120 
But  CG = AF  (being radii of the epicycle) 
so  AF : CE = 88P 13’ : 120 
thus  84P 33’ : CE = 88P 13’ : 120 
so  CE = 115P 1’  (when CG = 84P 33’, and AE = 120) 
 
Now  AC = AE + EC 
so  AC = 120P + 115P 1’ = 235P 1’  (where AF = 84P 33’ and AE = 120) 
so  AD = ½ AC = 117P 30’ 
so  DE = AE – AD = 120P – 117P 30’ = 2P 29’  (where AE = 120P) 
 
Thus  DE = 2P 29’ 
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and  AF = 84P 33’ 
and  AD = 117P 30’ 
where  AE = 120P 
 
Hence  DE = 1 ¼  
and  AF = 43 10’ 
and  AD = 60 
 
by proportional translation, where AC = 120. 
 
Q.E.I. 
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THE BRIGHTNESS PROBLEM 
 

Is Ptolemy’s hypothesis for Venus refuted because Venus’s brightness would have to vary so 
much as not to match the appearances?  This hypothesis will come up again in a certain 
preface to Copernicus’s book (a preface he did not write) because it puts Venus so much 
closer to us at perigee than at apogee.  Consider the numbers (rounding a bit for simplicity): 
 
DE = 1 
AF = 43 
AD = 60 
 
Apogeal distance  =    ED  +  DA  +  AF    =    1  +  60  +  43    =  104 
Perigeal distance  =  EC – CG  =  DC – DE – AF  =  AD – DE – AF = 60 – 1 – 43 = 16 
 
So according to Ptolemy, Venus is about 10 times further from us at apogee than it is at 
perigee!  But then it should appear remarkably brighter at perigee than at apogee, which is 
not the case.  So is he refuted? 
 
No, not for that reason.  First of all, the case is just as bad for Copernicus.  In each of the two 
accompanying diagrams (one for Ptolemy, the other for Copernicus), 
 
AS = 43 = SP 
SE = 60 
PE = 17 
AE = 103 
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Second, when Venus is near 
perigee at A, much less of its lit-
up face is visible to us, whereas 
near apogee at C, almost all its lit-
up face is toward us, thus angles 1 
& 2 will not be too unequal. 
 
(Note:  This reply assumes that 
Venus is reflective only, and not 
self-luminous!  That is not 
something which Ptolemy knew, 
but perhaps he should have begun 
to suspect at this point.) 
 
 
 
 
SEEING THE NEED FOR AN 
EQUANT. 
 
In Day 24 we will be determining some things about Venus’s equant.  But before doing that, 
we need to see the need for adding in an equant in the first place.  To see that, we need to 
answer two questions: 
 

[A]  What are the two failures of the simple “eccentric deferent” hypothesis 
for Venus (which was determined in its proportions just above, following 
Almagest 10.2)? 

 
[B]  What adjustment would make the hypothesis produce the appearances, 
and how? 

 
 
 
[A]  In the accompanying diagram, let the line DS from 
us to the mean sun be at right angles to AP, the line of 
apsides for Venus (namely when the mean sun is 25° 
30’ into the Water Bearer).  According to our simple 
hypothesis of an eccentric deferent: 
 
 GEE = ∠SDE = ∠EDV + B 
 GWE = ∠SDW = ∠WDV – B  
so GEE – GWE = (∠EDV + B) – (∠WDV – B) 
so GEE – GWE = 2B = 2∠CVD = ∠CXD = arcCD 
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Now, by Almagest 10.2: 
 
  CD = 1P 15’ 
and  AP = 120P 
and  CV = 60P 
 
so 
 
(i.e. DV is practically equal to CV) 
 
so  CD = 1P 15’ 
and  DV = 60P 
hence  CD = 2P 30’ 
where  DV = 120P  
 
so  arcCD = 2° 23’  (for a circle around rCDV) 
so  GEE – GWE = 2° 23’ 
when the line from us out to the mean sun is perpendicular to AP, the line of apsides for 
Venus. 
 
 
BUT IN FACT, when the mean sun is 25° 30’ within the water bearer, 
 
  GEE – GWE = 4° 45’ 
 
That’s our first “uh-oh.” 
Our second “uh-oh” is that ∠SDE + ∠SDW is greater than what is actually observed, i.e. the 
sum of elongations for Venus which we can calculate based on our simple hypothesis (for 
when the mean sun is along DS perpendicular to AP) does not match the observed sum there. 
 
So we can sum up our two “uh-ohs” this way: 
 
(1)  The calculated (GEE – GWE) < the observed (GEE – GWE) 
(2)  The calculated (GEE + GWE) > the observed (GEE + GWE) 
 
 
 
[B]  How must we adjust our hypothesis to match the 
appearances? 
 
In the accompanying figure, ES is the line from us out 
to the mean sun, which sweeps around us uniformly.  
DV is the line parallel to this from the center of Venus’s 
eccentric deferent, and hence DV sweeps around D 
uniformly with the speed of the mean sun. 
 

C

D

A

B

P

W

E

VS
Q

T
R

( ) ( ) PPPCVCDDV 6060'151 2222 =+=+=



 171 

Now, if we assume that the epicycle falls behind the regular motion around D (i.e. behind V, 
say at W), and then gradually catches up (throughout the motion from A to P), and then gets 
ahead of the regular motion around D (i.e. W gets ahead of V), while slowing down again 
(throughout the motion from P to A), it will follow that ... 
 
(2)  The SUM of the elongations for V will be greater than those actually observed for W 
(and this is one appearance we need to produce), and 
 
(1)  The DIFFERENCE of the elongations for V will be less than those actually observed for 
W (the other appearance). 
 
 To see this, just let W be (for now) any point behind V along the motion from A to P.  
Then it is a matter of simple geometry to see that ∠BER > ∠CET, i.e. the calculated sum of 
elongations will be greater, since the “hypothetical” epicycle is closer to us when at V.  
Hence fact (2) is produced. 
 
Again, since  ∠BES > ∠CES 
and   ∠RES < ∠TES 
thus   (∠RES  – ∠BES) < (∠TES – ∠CES) 
(since the lesser with more taken away is less than the greater with less taken away) and 
hence fact (1) is produced, i.e. the calculated difference of the elongations is less than the 
observed difference. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
GETTING IT MORE EXACTLY 

 
 
So far we have only said “we get things greater and less in the right order if W is behind and 
then ahead of V.” 
 But in order to get things greater and less in just the right amounts, we need to 
specify how far behind W will be at certain points, and how far ahead at others. 
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 Now the center of the epicycle for Venus has to move with the speed of the mean sun 
(since it coincides with the mean sun at apogee and perigee every time, so if it has a uniform 
speed it must be that of the mean sun).  So if we draw WQ parallel to ES, that will hit the 
line of apsides at the point around which Venus’s epicycle travels with that speed. 
 But how big is DQ compared to DE?  Well, that’s what Almagest 10.3 is all about ... 
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PTOLEMY 
 

DAY 24 
 

 
FINDING VENUS’S EQUANT CENTER; 
BASICS FOR THE OUTER PLANETS; 

THE MOVING ECCENTRIC EQUIVALENCE 
 
 
 
 
FINDING VENUS’S EQUANT CENTER 
 
Ptolemy opens Almagest 10.3 with the line “Since it is not clear whether the regular 
movement of the epicycle is effected about point D . . .”  After forewarning us about the 
equant, he will now establish the location of the equant’s center.  We find it by a kind of 
analysis:  “Let it be required to find the center around which we say the epicycle’s regular 
movement is effected.  Then let it be [called] the point D,” and now let’s see exactly how far 
away it is from B (our eye) in comparison to the distance BH (where H is the geometric 
center of the deferent). 
 
 

Given:  B is us, the center of the ecliptic 
 D is the center of uniform motion for Venus’s epicycle 

BS is the line from us to the mean sun 25.5° into the Water Bearer, i.e. the point at 
which it “appears” 90° from Venus’s apogee & perigee. 

 
Find:  Ratio of BD to BH 

 
 
 
Draw DE parallel to BS. 
Make the epicycle about E with the radius of the 
right proportion, as determined in 10.2.  Draw 
tangents from the eye to the epicycle at that 
location, BF & BG. 
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Now  ∠FBS = GEE = 48 1/3° observed (evening star) 
and  ∠SBG = GWE = 43 7/12° observed (morning star) 
so  ∠FBG = 91° 55’ 
but  ∠FBE = ½ FBG 
and  ∠FBE = ½ FXE 
so  ∠FBG = ∠FXE = 91° 55’ = arcEF 
so  EF = 86P 16’  when  BE = 120P 
so if  EF = 43P 10’  [as derived in Day 23] 
then  BE = 60P 3’ 
 
 
 
 
 
Also  (GEE – GWE) = 4° 45’ = 2∠BED 
but  2∠BED = ∠BRD = arcBD 
so  arcBD = 4° 45’ 
thus  BD = 4P 59’  when BE = 120P 
or  BD = 2½P  when BE = 60P 3’  and  EF = 43P 10’ 
 
But  BH = 1¼P 
so  BH = ½ BD. 
 
Q.E.I. 
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HYPOTHESIS FOR VENUS  (With its parts drawn to scale) 
 
E = center of ecliptic (us)  AD = 60 
D = center of Venus’s deferent  AF = 43 1/6  
Q = center of Venus’s equant circle DE = 1 ¼  
 
 
 

SUMMER

WINTER

SPRINGFALL
E

D

C A

B

10
20

10

20

10

20

GEMINI

TAURUS

AR
IES

PISC
ES

AQUARIUS

CAPRICORNSAGITTARIUS

SCORPIU
S

LI
BR

A
VI

R
G

O

LE
O

CANCER

20

20

20
20

20

20

20

20

20

10

10

10
10

10

10

10

10

10

30

30

30

30 30

30

30

30

QD F

A

G

C

B

VENUSIAN APOGEE
25 degrees into Bull

VENUSIAN PERIGEE
25 degrees into Scorpion



 176 

ALMAGEST BOOK 10 CHAPTER 6 
 
 
In this chapter, Ptolemy begins to introduce some fundamental notions about the motions of 
the outer planets.  He supplies two demonstrations: 
 [1]  Whenever an outer planet & mean sun are in opposition or conjunction, our line 
of sight to the planet passes through the center of its epicycle. 
 [2]  The line from the center of an outer planet’s epicycle to the planet itself is 
parallel to the line from us to the mean sun. 
 We will argue for these statements momentarily.  But first, a few basics about outer 
planets. 
 
 •  All 3 outer planets have equants. 
 •  We used greatest elongations to know when Venus is at tangency on its epicycle, 
and used this information to find its eccentricity and the ratio of its epicycle to its deferent 
and the location of its apogee.  Since outer planets have no greatest elongations from the sun, 
we need another method to gain insight into these planets.  We will not cover this sort of 
thing in this course, mainly because it is more complex than is worthwhile for the purposes 
of this course (for interested readers, demonstration of Saturn’s eccentricity & apogee is in 
Almagest 11.5, and demonstration of Saturn’s size-of-epicycle is in 11.6). 
 •  For an outer planet, we need to be able to find the center of the epicycle (as we did 
with Venus by taking sums of elongations that occur for given positions of the mean sun; 
bisect the sum of the elongations for that place in the zodiac, and you are bisecting the angle 
between the tangents to the epicycle, and shooting straight for the epicycle’s center.  And 
that is where the visible sun is, by the way, or pretty nearly).  We will do this by 
demonstrating the 2 theorems of Ch. 6, enunciated above. 
 
 

 [1]  Whenever an outer planet & mean sun are in opposition or conjunction, 
our line of sight to the planet passes through the center of its epicycle. 

 
 
 

Given:  Deferent of outer planet, center D. 
 F center of uniform motion of epicycle, 
 E center of ecliptic = us. 
 EB joining us to the center of the epicycle, B. 
 Case (1):  Star is at G 
 Case (2):  Star is at K 
 

Prove:  When star is at G, the mean sun “appears” at G. 
 When star is at K, the mean sun “appears” at M. 
 
(1)  When the star is at G, 
 
then, since S    =       L       +      A 
thus  S    =    ∠AFB  +  arcHKLG 
i.e.  S    =    ∠AFB  +  (360° – ∠HBG) 
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so  S    =    ∠AFB  –  ∠HBG  +  360° [you can just ignore this 360°] 
i.e.  S    =    ∠AFB  –  ∠EBF  [∠HBG = ∠EBF] 
so  S    =    ∠FEB 
i.e. the mean solar movement is ∠FEB, and so when the planet is at G the mean sun “appears” along 
EB, i.e. the line from us through the center of the planet’s epicycle.  Here we have solar 
CONJUNCTION. 
 
(2)  When the star is at K, 
 
then, since S    =       L       +      A 
thus  S    =    ∠AFB  +  arcHNK 
i.e.  S    =    ∠AFB  +  (180° – ∠KBL) 
so  S    =    ∠AFB  –  ∠KBL  +  180° 
i.e.  S    =    ∠AFB  –  ∠EBF  +  180° 
so  S    =    ∠FEB + 180° 
so  S    =    arcABCM 
i.e. the mean solar movement is arcABCM, and so when the planet is at K the mean sun “appears” 
along EBM, i.e. the line from us through the center of the planet’s epicycle.  Here we have solar 
OPPOSITION. 
 
NOTE:  G and K are the points of greatest and least passage respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[2]  The line from the center of an outer planet’s epicycle to the planet itself 
is parallel to the line from us to the mean sun. 

 
 
Given:  Star is at N, epicycle at B, EX is parallel to BN 
Prove:  The mean sun “appears” along EX. 
 
Since  S    =       L       +      A 
thus  S    =    ∠AFB  +  ∠HBN 
i.e.  S    =    ∠AFB  +  ∠GBN – ∠GBH 
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so  S    =    ∠AFB  –  ∠GBH  +  ∠GBN 
i.e.  S    =    ∠AFB  –  ∠EBF  +  ∠BEX 
so  S    =    ∠AEB + ∠BEX 
so  S    =    ∠AEX 
Therefore the mean sun appears along line EX. 
 
Q.E.D. 
 
 
Or, GIVEN that the mean sun is at X, we can prove that EX is parallel to BN: 
 
Since  S        =       L       +      A 
thus  ∠AEX = ∠AFB + ∠HBN 
so  ∠AEX – ∠AEB  = ∠AFB – ∠AEB + ∠HBN 
i.e.  ∠BEX   =   ∠EBF  +  ∠HBN 
or  ∠BEX   =   ∠GBH + ∠HBN 
so  ∠BEX   =   ∠GBN 
Therefore EX is parallel to BN. 
 
Q.E.D. 
 
 
In order for these proofs to work, Ptolemy must assume that at some point in the past or future the 
sun, the mean sun, Earth, Mars (for example), and the center of Mars’s epicycle were (or will be) in a 
straight line.  This makes the motions more intelligible anyway, and it is similar to the assumption 
that there are periodic joint returns, i.e. exact ones, not just approximate ones (although we might 
find out what they are only approximately). 
 
Notice, too, that he assumes the equant before he can find where the center of the epicycle is, and 
therefore before he can even find the eccentricity, as opposed to the procedure for Venus, where the 
eccentricity is found independently of the equant. 
 
Also, it is not clear that the assumption of an equant is warranted here.  It is not like with Venus, 
where we get the basic hypothesis first and see that it needs adjusting.  Here we introduce it at the 
outset, perhaps by analogy with the inner planets.  At any rate, it turns out to work. 
 
 
MOVING ECCENTRIC EQUIVALENCE 
 
In Almagest 12.1, Ptolemy says: 
 

If the anomaly relative to the sun is taken care of by the hypothesis of the 
eccentricity (this can be done only in the case of the three stars capable of any 
elongation from the sun), with the eccentric’s centre carried eastward about the 
ecliptic’s centre at a speed equal to the sun’s and with the star moving on the 
eccentric about its centre westward at a speed equal to the anomalistic passage etc.  
. . . 
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He is saying that the planets can be accounted for not just by an eccentric deferent and an equant, but 
also by some other “hypothesis of eccentricity,” namely a moving eccentric circle.  Just as he 
accounted for the movement of the sun by an eccentric but also by an epicycle, so too he has two 
ways of modeling the planets, at least the outer ones. 
 
There is an unfortunate thing going on in the Greek which makes it seem as though Ptolemy is saying 
the eccentric hypothesis will work only for the outer planets (this is his remark in the parentheses in 
the passage above).  That is not what he is saying.  The limitation he implies is supposed to modify 
what comes after it, so it should be understood more like this: 
 

If the anomaly [of any planet] relative to the sun is taken care of by the hypothesis 
of the eccentricity (and this additional thing I’m about to mention can be done only 
in the case of the three stars capable of any elongation from the sun), with the 
eccentric’s centre carried eastward about the ecliptic’s centre at a speed equal to the 
sun’s and with the star moving on the eccentric about its centre westward at a speed 
equal to the anomalistic passage etc. ... 
 

So the only thing restricted to the 3 outer planets is “the equality of the speeds of the moving 
eccentric and of the sun.” 
 
Anyway, let’s take a moment to see what the equivalent hypothesis of the “moving eccentric” is. 
 
 

MOVING ECCENTRIC EQUIVALENCE 
 

Given:    An outer planet on a same-direction epicycle with deferent of center C, where we are (we are ignoring 
the eccentricity of the deferent to keep things simple);  in time T the epicycle moved ∠BCD = L, the 
star moved ∠EDP = A, and the mean sun moved ∠BCS = S  [remember CS is parallel to DP for the 
outer planets].      

              The same outer planet, on eccentric of center M which is moving about O where we are; in time T the 
eccentric moved ∠MOG = L + A = S, the star moved westward on the eccentric through ∠NGK = A, 

  and OG = DP, 
  and GN = CD. 
 

Prove:  ∠BCP = ∠HOK  (apparent motions) 
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Well,  ∠KGN = A,  ∠EDP = A 
so  ∠KGO suppl.A, ∠PDC suppl.A 
so  ∠KGO = ∠PDC 
but  OG  =  DP 
and  GK  =  CD   [since GK = GN, and GN = CD] 
so  rKGO = rPDC 
so  ∠KOG = ∠CPD 
 
Again  ∠MOG = L + A = S, ∠BCS = S 
so  ∠MOG  =  ∠BCS 
minus  ∠KOG  =  ∠CPD  [proved above] 
so  ∠MOK  =  ∠BCS – ∠CPD [remainders] 
i.e.  ∠HOK  =  ∠BCS – ∠PCS [CS parallel to DP] 
so  ∠HOK  =  ∠BCP 
 
Q.E.D. 
 
 
In general, all we need is: 
  PD : DC = OG : GK. 
 

 
 
 
NOTE:  In the “moving eccentric” hypothesis, the mean sun is always on the line of apsides (of the 
eccentric), i.e. along OH at first (it is assumed to be up there), and then along ON. 
So ∠HON = S = L + A. 
But the meanings of “L” and “A” are different, since we no longer have an epicycle.  “L” and “A” 
still mean the same in terms of appearances, i.e. “L” is the mean motion around us, and “A” is the 
heliacal anomaly.  But now we are saying the cause of “A” is westward motion along the moving 
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eccentric, while the cause of “L” is the fact that the moving eccentric moves with the speed of the 
mean sun, which is L + A. 
 So when we say “S = L + A” now, for the moving eccentric, we mean the appearances, while 
L has no separate “incarnation” in this hypothesis, like it does in the case of the epicycle (where it is 
the movement of the center of the epicycle around the equant’s center). 
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PTOLEMY 
 

DAY 25 
 
 
 
We are now moving on to material which Ptolemy covers in Book 12 of the Almagest:  
stations.  We want to be able to predict stations, and to say exactly where the planet is on its 
epicycle when a station occurs. 
 
 
(1)  STATIONS DO NOT OCCUR AT TANGENCY. 
It is easy to think that the stations will occur when the line from our eye to the planet is 
tangent to the epicycle.  But that is not the case!  It is not hard to see why that cannot be the 
case:  at tangency, motion on the epicycle is temporarily nullified in the appearances, leaving 
us with the speed of the mean planet, i.e. the planet will appear to move with the apparent 
motion of the epicycle itself.  That is not nothing.  We aren’t looking for where one speed 
contributes nothing to the appearances and the other is left over.  We need to find a place 
where the two speeds cancel each other out in the appearances.  Where precisely does that 
happen, and why? 
 
 
(2)  RECALLING THE APPEARANCES. 
 
Let’s look to some old raw data about Saturn’s retrograde motions, of the sort that Ptolemy 
would have had available to him. 
 
[a]  Saturn first began retrograde motion on June 26, 1993, after STATION from June 6 to 
16, 1993.  [Call this SE, or Eastern Station] 
 
[b]  Saturn next resumed its eastward motion on Nov 13, 1993, after STATION from Oct 24 
to Nov 3, 1993.  [Call this SW, or Western Station] 
 
[c]  Saturn next resumed retrograde motion on July 1, 1994, after STATION on June 21, 
1994 [Call this Se]. 
 
Thus the time from SE to Se (from station to the next corresponding station) = 1 year + 15 
days, i.e. it happens about once a year (around solar opposition), but takes a bit longer 
because Saturn moves slowly eastward on the ecliptic, so it takes the sun a bit longer than a 
year to catch up with it again (or become opposite to it again). 
 
[d] The time from SE to SW = June 6 1993 to Oct 24 1993 = 140 days 
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 The time from SW to Se = Oct 24 1993 to June 21 1994 = 240 days 
 
[e] At SE, longitude of Saturn = 330.3° east of spring equinox = A 
 and longitude of mean sun = 435.3° east of spring equinox, 
 but minus the full circle (360°) = 75.3° east of spring equinox = B 
 
Thus Saturn rises before the sun. 
 
 
Midway between SE & SW is around 70 days after 
SE, i.e. Aug 15 1993, where the longitude of Saturn = 
327.3°, longitude of mean sun = 504.3°, and therefore 
Saturn has an elongation of 177°, i.e. almost exactly 
180° of elongation, i.e. near solar opposition.  
Therefore retrogradation is considered a “heliacal” 
anomaly, because it happens during solar opposition. 
 
At SW, Saturn’s longitude = 327.3° = C 
mean sun’s longitude = 573.3° = (minus 360°) 213.3° 
= D 
 
Thus Saturn rises after the sun. 
 
Looking in the sky, facing south, one sees this: 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
Midway between SW and Se is about 120 days after SW, 
i.e. Feb 21 1994, where 
Longitude of Saturn = 332.9° east of spring equinox 
Longitude of mean sun = 691° = (minus 360°) 331.7° east of spring equinox 
So Saturn’s elongation = 1.2°, i.e. solar conjunction. 
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(3)  BACK TO THE STATION PROBLEM. 
Ptolemy makes certain assertions about where stations occur, although he does not 
immediately prove them.  (Note that by “star speed” he means the speed of the planet around 
the epicycle.)  He says: 
 
 
 
For the EPICYCLIC hypothesis, for any planet, 
 IF ½ AB : EA = epicycle speed : star speed 
 THEN point A divides progressions & regressions, which is 
to say that the star makes a station when at A. 
 (Motion on deferent = L, motion on epicycle = A) 
 
 
 
For the moving ECCENTRIC hypothesis, for any planet, 
 IF ½ AB : EB = eccentric speed : star speed 
 THEN point B divides progressions & regressions, which is to 
say that the star makes a station when at B. 
 (Motion of eccentric’s center C = L, motion of star westward 
along the eccentric = A). 
 
But these facts are not demonstrated until we get to the finding of station-points in Day 26. 
 
Before we do that, we need to do some preliminary geometry with Ptolemy. 
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THEOREMS PRELIMINARY 
TO DEMONSTRATION OF STATION POINTS 

 
 

DEMONSTRATION 1 
 
 
NOTE:  These theorems are not really necessary to demonstrating that 
station occurs here or there, but to demonstrating how the moving eccentric 
is EQUIVALENT to the epicyclic hypothesis.  The mathematics is rather 
beautiful. 
 
 

Given: Line from point F outside an epicycle (or eccentric) drawn 
through the center E 
arcCG = arcCH 
FGB & FHD joined through 
hence GD & HB meet at one point K (on diameter CA) 
 

Prove: AF : FC = AK : KC  (so the diameter is cut “externally & internally” in the same ratio) 
 
Join AD, DC (thus ∠ADC is right) 
Draw LCM parallel to AD  (thus ∠LCD is right). 
 
Now  ∠CDG = ∠CDH  [they stand on equal arcs] 
and  ∠DCL = ∠DCM  [both right] 
and  CD common 
so  rDCL = rDCM 
so  CL = CM 
thus  AD : CL = AD : CM 
but  AD : CM = AF : CF  [rAFD similar to rCFM] 
and  AD : CL = AK : CK  [rAKD similar to rCKL] 
so  AF : CF = AK : CK 
 
Q.E.D. 
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DISCUSSION: 
 
 
 
(1)  Getting back to astronomy for a moment: 
 for the EPICYCLIC, with the eye at F, 
 AF : CF = greatest distance : least = a : b; 
 for the ECCENTRIC, with the eye at K, 
 AK : CK = greatest distance : least = a : b. 
 
 
 
(2)  QUESTION:  Is K (i.e. the point where BH & GD 
intersect) really on the diameter?  This is fairly obvious from 
the symmetry of the figure.  But we can also argue like this: 
 let GD cut the diameter at point X, 
 and BH cut the diameter at point Z, without committing 
ourselves to saying whether these are the same point or not. 
In the demonstration above, we used K only as a point on GD, 
and so we can still say, from that demonstration: 
  AX : XC = AF : FC 
but  AZ : ZC = AF : FC by the same argument on 
the other side. 
hence  X & Z are the same point. 
Hence GD and BH cut the diameter at the same point, and hence cut each other at the point 
where they cut the diameter.  So K is indeed on the diameter. 
 
 
 
(3)  QUESTION:  Does the point K stay the same for all secants?   
 Notice that we produced point K by a random secant FGB (and its symmetrical 
partner FHD), from the given point F.  But AF : CF is fixed, and no matter where we draw 
FGB the proof will still result in the proportion AK : KC = AF : FC.  Hence K will always be 
the same fixed point, regardless of the secants we start with.  Neat! 
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(4)  Notice, too:  if we join the points of tangency for the two tangents drawn from F, that 
line will pass through K as well: 
 Let FG and FH be the two tangents, FCA the diameter, and join GKH.  I say that 
once again  AK : KC = AF : FC ... 
 

For let LCM be drawn parallel to AH, and let CH be joined. 
Now ∠CHK = ∠CAH [KH is perpendicular to AC, ∠AHC is right] 
but ∠CHM = ∠CAH [Euc.3.32, tangent & angle in alt. segment] 
thus ∠CHK = ∠CHM 
but ∠LCH = ∠HCM [both 90°] 
thus rLCH = rHCM [ASA] 
so CM = CL 
thus AH : LC = AH : CM [since CM = CL] 
but AH : LC = AK : KC [AH parallel to LC] 
and AH : CM = AF : FC [AH parallel to CM] 
so AK : KC = AF : FC 

 
Q.E.D. 
 
 
 
(5)  HARMONIC MEAN.  Note that FK is the harmonic mean between FC & FA. 
For AK : KC = AF : FC 
so AK : AF = KC : FC   [alternating] 
so AF – FK : AF = FK – FC : FC [AK = AF – FK; KC = FK – FC] 
and that is the definition of a harmonic mean, i.e. a thing (FK) whose difference from one 
extreme (AF) is to that extreme (AF) as its difference from the other extreme (FC) is to that 
extreme (FC). 
 
 
  
(6)  SMELLING THE FLOWERS.  If we draw 
secants through from F, they will be cut internally 
and externally in the same ratio by GH, the straight 
line joining the points of tangency.  (DF : FN = DE : 
EN)  This beautiful thing follows from the theorem 
Ptolemy has just proved.  No time or need to prove 
it here, but it is interesting, and very important to 
the study of conic sections by projection. 
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(7)  NEXT PRELIMINARY. 
 
 

Given:  External point F, arcGC = arcCH 
 FGB & FHD drawn through 
 BKH joined 
 EP perpendicular to BKH 
 EO perpendicular to FHD 
 

Prove:  DF : FH = BK : HK 
 HO : FH = KP : HK 
 
Join BND (obviously BND is perpendicular to AC). 
Drop HX perpendicular to AC. 
 
 
 
 
Now  BN = DN   [BND is 
perpendicular to diameter AC] 
so  DN : HX = BN : HX 
but  DN : HX = DF : FH  [rDNF similar to rHXF] 
and  BN : HX = BK : HK  [rBNK similar to rHXK] 
so  DF : FH = BK : HK 
 
Thus  DF + FH : FH = BK + HK : HK 
so  ½ (DF + FH) : FH = ½ (BH) : HK 
i.e.  FO : FH = HP : HK 
so  FO – FH : FH = HP – HK : HK 
so  HO : FH = KP : HK 
 
Q.E.D.   
 
 
 
QUESTION:  How do we know that  FO = ½ (DF + FH)? 
Well, let DT = HF 
so  FO = ½ FT 
so  FO = ½ (DF + DT) 
so  FO = ½ (DF + FH) 
 
 
 
 
 
 

A

K

C
HG

F

T

OP

B N D

E

X



 189 

(8)  THE EQUIVALENCE OF STATION POINTS FOR THE 2 HYPOTHESES. 
 
After the first demonstration, Ptolemy says: 
 

If therefore, in the epicyclic hypothesis, DF has been so drawn that HO : FH 
= epicycle’s speed : star’s speed, then, in the hypothesis of eccentricity, KP 
will have to HK the same ratio.  And the reason for not having used here, for 
the stations, the separated ratio (that is, the ratio of KP to HK) but the 
unseparated ratio (that is, the ratio of HP to HK) is that the epicycle’s speed 
has to the star’s speed the ratio which the longitudinal passage alone has to 
the anomalistic; but the eccentric’s speed has to the star’s the ratio which the 
sun’s mean passage (that is, the star’s longitudinal and anomalistic passages 
combined) has to the anomalistic. 

 
The “separated ratio” refers to KP : HK 
while the “unseparated” refers to HP : HK. 
 Ptolemy just showed that  HO : FH = KP : HK.  Now the ratio  HO : FH  (as we shall 
see) defines the EPICYCLIC station points.  So one might think that therefore  KP : HK 
defines the ECCENTRIC station points.  But that ratio does not, and Ptolemy is here 
explaining why.  For the EPICYCLIC, a station occurs when: 
 
 HO : FH = epicycle speed : star speed = L : A 
 
For the ECCENTRIC a station occurs when: 
 
 HP : HK = eccentric speed : star speed = L + A : A = KP + HK : HK 
 
Because the eccentric’s speed combines L + A, we get the eccentric’s station by the 
“unseparated” ratio,  HP : HK. 
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(9)  ONE MORE LEMMA. 
 
Ptolemy introduces another Lemma, saying that “APOLLONIUS first takes this little lemma 
. . .”.  This lemma is required for determining where station occurs. 
 
 

Given:  rABC in which BC > AC 
    CD ≥ AC 
 

Prove:  CD : BD  >  ∠ABC : ∠BCA 
 
Complete parallelogram ADCE. 
Produce  BA & CE  to F. 
 
 
Now  CD  ≥  AC 
so  AE  ≥  AC    [CD = AE] 
So the circle about A, radius AE, passes through C or beyond it, as at H (in diagram below). 
 

FIRST let it pass through C, so that  AE = AC. 
 
So rAEF  >  Sect.AEG 
so rAEF : Sect.AEC  >  Sect.AEG : Sect.AEC 
so rAEF : rAEC  >  Sect.AEG : Sect.AEC [Sect.AEC > rAEC] 
But rAEF : rAEC  =  FE : EC 
and Sect.AEG : Sect.AEC  =  ∠EAF : ∠EAC 
so FE : EC  >  ∠EAF : ∠EAC   [call this result “Q”] 
but FE : EC = FA : AB = CD : BD 
and ∠EAF : ∠EAC = ∠ABC : ∠BCA  [∠EAF = ∠ABC, ∠EAC = ∠BCA] 
so CD : BD  > ∠ABC : ∠BCA 
 
 

NEXT let the circle about A, radius AE, pass beyond C at H, so that  AE > AC.  (2nd CASE) 
 
Thus rAEF  >  Sect.AEG 
so rAEF : Sect.AEH  >  Sect.AEG : Sect.AEH 
but ∠EAF : ∠EAC = Sect.AEG : Sect.AEH 
so rAEF : Sect.AEH  >  ∠EAF : ∠EAC 
but Sect.AEH  >  rAEC 
so rAEF : rAEC  >  ∠EAF : ∠EAC 
so FE : EC  >  ∠EAF : ∠EAC   [rAEF : rAEC = FE : EC] 
And now just continue the reasoning again from [Q] in the first case above. 
 
 
Q.E.D. 
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PTOLEMY 
 

DAY  26 
 
 
DETERMINATION OF STATIONS 
 
 
EPICYCLIC PROGRESSION PROOF: 
 

Given:  F is our eye 
  CE : CF > epicycle speed : star speed 
  and hence we can draw secant FGB so that 
  ½ BG : FG = epicycle speed : star speed 
  K is a random point on arcAG 

 
Prove:  When the star goes through arcKG, it is in 

 PROGRESSION 
  
Join FK through to L (only for regression part later). 
Join BK, EK, EG. 
 
Now,  BG >  BK    [closer to 
center] 
so  BG : FG  >  ∠GFK : ∠GBK  [Lemma, 
Day 25] 
so  ½ BG : FG  >  ∠GFK : 2∠GBK 
i.e.  epicycle speed : star speed  >  ∠GFK : ∠GEK 
 
But if we give ourselves an angle GFN through which the epicycle moved in the same time 
that the star moved through angle GEK, 
then  epicycle speed : star speed = ∠GFN : ∠GEK 
hence  ∠GFN > ∠GFK.  (To adjust the disproportion to a proportion.) 
 
So, while the epicycle goes from G to N, 
the star goes    from K to G. 
 
So to our eye, the star goes from K to N, which is PROGRESSION. 
 
Q.E.D. 
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Incidentally, if   1 : 3 = ∠GFN : 60°  [i.e. if the epicyclic speed is to the star speed as 1 to 3, 
and ∠GEK = 60°], then ∠GFN = 20°, and we can’t construct this without conics.  And if the 
epicycle speed is to the star speed in some irrational ratio, then maybe we cannot construct 
∠GFN at all. 
 
But that’s okay, because ∠GFN is not a math construction, but the angle swept out by point 
G on the star’s epicycle in a given time, i.e. it is a physical reality. 
 
 
 
ECCENTRIC PROGRESSION PROOF: 
 

Given:  H is our eye (and arcAB = arcAD, GHD joined) 
  CE : CF > epicycle speed : star speed 
  ½ BG : FG = epicyclic speed : star speed 
  but  ½ BG : FG = ½ DG – HG : HG  (by Lemma, Day 25) 
  so  ½ DG – HG : HG = epicyclic speed : star speed = L : A 
  so  ½ DG – HG + HG : HG = L + A : A 
  so  ½ DG : HG = L + A : A 
  i.e. ½ DG : HG = eccentric speed : star speed 
  K is a random point on arcAG. 
 
Prove:  When the star goes through arc AG, it is in PROGRESSION. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Join FK through to L, KH through to M. 
Since H is the harmonic point for secants from F (since arcAB = arcAD), 
thus  arc AL = arc AM 
thus  arc BL = arc DM. 
 
Now  BK < BG 
so  BG : FG  >  ∠GFK : ∠GBK  [Lemma, Day 25] 
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so  BG + FG : FG  >  ∠GFK + ∠GBK : ∠GBK 
i.e.  BF : FG  >  ∠BKL : ∠GBK  [Euc. 1.32] 
so  DH : HG  >  ∠BKL : ∠GBK  [BF:FG = DH:GH, Thm p.394] 
or  DH : HG  >  ∠DKM : ∠GBK [arcBL = arcDM] 
so  DH : HG  >  ∠DKM : ∠GDK [∠GBK, ∠GDK on same arc GK] 
so  DH + HG : HG  >  ∠DKM + ∠GDK : ∠GDK 
i.e.  DG : HG  >  ∠GHK : ∠GDK [Euc. 1.32] 
so  ½ DG : HG  >  ∠GHK : 2∠GDK 
so  ½ DG : HG  >  ∠GHK : ∠GEK [angle at center is double] 
 
But, by our givens, 
  ½ DG : HG = eccentric speed : star speed 
and therefore 
  eccentric speed : star speed > ∠GHK : ∠GEK. 
 
So if  eccentric speed : star speed = ∠GHN : ∠GEK, 
 
it follows ∠GHN  >  ∠GHK. 
 
But the eye is at H.  Therefore, while the star goes from G to K on the eccentric, in the same 
time the eccentric circle itself goes from N to G, and thus the star appears to go from N to K, 
which is PROGRESSION. 
 
Q.E.D. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NOTE:  The outer circle is drawn just to indicate the motion of the eccentric LBADM around point 
H, i.e. from N to G’. 
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EPICYCLIC & ECCENTRIC REGRESSION 
 
 
 
EPICYCLIC REGRESSION PROOF: 
 

Given:  F is our eye 
  CE : CF > epicycle speed : star speed 
  and hence we can draw secant FKL so that 
  ½ KL : FK = epicycle speed : star speed 
  G is a random point on arcKC 

 
Prove:  When the star goes through arcKG, it is in REGRESSION 
  i.e. it retrogrades through ∠GFN during the time it goes 

through arcKG 
  
 
Well,  FK > FG 
so  KL : FK  <  ∠GFK : ∠GLK   [Lemma, Day 25] 
so  ½ KL : FK  <  ∠GFK : 2∠GLK 
so  ½ KL : FK  <  ∠GFK : ∠GEK 
thus  epic.spd : star spd.  <  ∠GFK : ∠GEK [½KL : FK is as speeds] 
So if we replace ∠GEK with ∠KEN so as to make the ratios equal, 
 
then  ∠KEN > ∠GEK 
and  epic.spd : star spd.  =  ∠GFK : ∠KEN 
 
So in the same time that the epicycle progresses through angle GFK, the star will sweep out 
angle KEN around the center of the epicycle, so that the star’s net motion will be from G to 
N, i.e. angle GFN to our eye, which is REGRESSION.  Hence, too, if we replace ∠GFK 
with ∠X to make the ratios equal (Ep. : Star = X : GEK), then X < GFK, and so in time star 
goes from K to G, epicycle goes less than ∠GFK, hence the star is regressing. 
 
Q.E.D. 
 
 
 
Q:  Why give that CE : CF > ep. : star ?  (Otherwise we can’t draw the secant.) 
Q:  What if star spd. = zero?  (The planet is always in progression.) 
Q:  What if ep. spd. = zero?  (“Stations” are at the tangent points!) 
Q:  What if CE : CF = ep. : star ?  (One station at C.) 
Q:  What if CE : CF < ep. : star ?  (No stations; all progression.) 
 
Exercise:  In a diagram, correlate (with letters) the planet’s zig-zag (or loop) pattern in the 
sky with the places the star is on the epicycle. 
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ECCENTRIC REGRESSION PROOF: 
 

Given:  H is our eye 
  ½ KM : HK  =  eccentric spd. : star spd. 
  (the “unseparated ratio” corresponding to ½ KL : FK for the epicyclic) 
  G is a random point on arcKC 
 
Prove:  When the star goes through arc KG, it is in REGRESSION. 
 

 
Well,  KL : FK  <  ∠GFK : ∠GLK  [as before, for epicycle, above] 
so  KL + FK : FK  <  ∠GFK + ∠GLK : ∠GLK 
so  FL : FK  <  ∠BGL : ∠GLK  [Euc.1.32] 
so  MH : HK  <  ∠BGL : ∠GLK  [p.394] 
so  MH + HK : HK  <  ∠BGL + ∠GLK : ∠GLK 
so  KM : HK  <  ∠DGM + ∠KMG : ∠GLK 
i.e.  KM : HK  <  ∠KHG : ∠GLK  [Euc.1.32, rGHM] 
so  ½ KM : HK  <  ∠KHG : 2∠GLK 
so  ecc.spd : star spd  <  ∠KHG : ∠GEK 
 
So if we replace ∠GEK with ∠KEN so as to make the ratios equal 
 
then  ∠KEN > ∠GEK: 
and  ecc.spd : star spd.  =  ∠KHG : ∠KEN 
 
So in the same time that the eccentric progresses through angle KHG, the 
star will sweep out angle NEK around the center of the eccentric, so that 
the star’s net motion will be from N to G, i.e. angle NHG to our eye, which 
is REGRESSION. 
 
Q.E.D. 
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NOTE:    If CE : CF is not greater than e : s, then either  CE : CF = e : s, in which case you 
get one station at C, or CE : CF < e : s, and we get no station at all, because, given the 
foregoing proofs, progression will always produce the greater angle, and therefore we get 
nothing but progression. 
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CONSTRUCTION OF THE STATION POINT. 
 
Can we construct the station points?  Given our eye is at F, and given an 
epicycle with center E, radius EC, and given that 
 
 EC : CF > epicycle speed : star speed 
 
can we construct the line FGB so that 
 
 ½ BG : FG = epicycle speed : star speed  ? 
 
We could employ some sort of Dedekindian postulate, and say to 
ourselves “the ratio of the half of the intercepted segment to the external 
segment decreases continuously as FGB goes away from E, so there must 
be a place in between where the proportion holds good.” 
 But it turns out we can actually construct it. 
 
Given:  e : s  is a given ratio (expressed in numbers or lines) 
 
To do:  Find a secant FGB so that 
  ½ BG : GF = e : s 
 
First cut EF at H so that 
 
  EH : HF = e : s  [Euc.6.10] 
 
Next, describe a circle on HF as diameter, cutting circle E at G. 
Describe a circle on EF as diameter. 
Now join FG, cutting the circle on EF at P, and cutting circle E at B. 
Join PE. 
Join GH. 
 
Now,  ∠EPF is 90°   [angle in a semicircle] 
and  ∠HGF is 90°   [angle in a semicircle] 
so  PE is parallel to GH 
so  PG : GF = EH : HF 
so  PG : GF =  e : s  [we cut  EH : HF = e : s] 
 
But EP is perpendicular to BPG, and E is the center, hence BP = PG, 
 
hence  PG = ½ BG 
 
so  ½ BG : GF  =  e : s 
 
Q.E.F. 
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PORISM:  Since the construction is possible only if the circle on HF cuts the circle E, H must be 
inside circle E, and therefore  EC : CF  >  EH : HF, i.e.  EC : CF  >  e : s,  and hence this is a 
condition for the possibility of the construction. 
 
 
WAIT A SECOND—WHERE’S THE EQUANT? 
 Ptolemy appears to have ignored the equant, and even the eccentricity of the deferent, for 
these initial demonstrations.  That is, he assumes that the center of the epicycle makes its mean 
movement about F, our eye, when in fact it does not.  This is because he is so far only considering the 
matter abstractly and in the simplest case.  It is only in Ch. 2 that he begins to study the particular 
planets, and to apply the general theorem to the model for Saturn (for example), to find out where it 
makes stations, how long it should spend in regression (depending on the place in the zodiac etc.). 
 First he takes it at its mean distance, where the mean movements in longitude and anomaly 
will be very nearly the same as the apparent movements.  So that is like the ideal case already done, 
but with the particular numbers for Saturn’s speeds in L and A. 
 He finds the angle about the center of the epicycle subtending the semi-arc of the regression, 
and from knowing the mean speed in anomaly (by the tables generated from the periodic joint 
returns), he knows the time it takes Saturn to move through double that angle, and so figures the 
regression, when Saturn’s epicycle is at its mean distance from Earth, should take about 138 days. 
 
 
HOW ON EARTH DID THEY FIGURE THIS OUT? 
 How did Ptolemy’s predecessors discover this rule for where station occurs? 
 
One way could be by observations.  We can observe the star at station (B) at a given time.  Knowing 
when it is at station, by our tables of planetary motion, we can also know how far the star has gone 
from its last time at apogee G, i.e. we know ∠GEB.  By planetary theory, we know the magnitude of 
the epicycle, i.e. we know BE : EC. 
 
Since we know ∠GEB, we know its supplement, ∠BEC.  Hence we know ∠BEC and the ratio BE : 
EC, and therefore rBEC is solved, and all its sides and angles are known. 
 
Therefore we also know ∠EBC, and so too its supplement, ∠EBA.  But EB = EA, and hence ∠EBA 
= ∠EAB, and so we know ∠EAB, i.e. ∠EAC. 
 Thus we know ∠ECA  [from rBEC] 
 and we know ∠AEC  [by Euc.1.32] 
and we know the ratio AE : EC [the magnitude of the epicycle] 
and therefore rAEC is solved, and all its sides and angles are known. 
 
Therefore we know AC : EC [from rAEC] 
and we know  BC : EC [from rBEC] 
so that, putting EC in the same terms for each ratio, 
we know  AC : BC 
so we know  AC – BC : BC  as well, 
i.e.   AB : BC 
is given. 
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Comparing this value (for each planet) to the ratio of the epicycle’s speed to the star’s speed, we 
notice in each case that 
 
   ½ AB : BC  =  epicycle speed : star speed 
 
 
IDEM ALITER.  But since it is very difficult (or impossible) to 
observe a station accurately, i.e. to say exactly when a star is at 
station (since it is really just an instant in time, and just seems 
longer because the planet is moving so slowly for a while on 
either side of station), this is not likely to be the way the 
ancients discovered the rule.  Perhaps they discovered it by 
beginning with a simple case, e.g. when there is only 1 station, 
namely at P, perigee, and by thinking (if this is not 
anachronistic to say) Newton-style.  We know that if a station 
occurs at P, then the speed of the star and of the epicycle must 
be such that, as we take equal arcs NP, PK smaller and smaller, 
 
 
  
 
 
  (chords ult. as arcs) 
 
 
 
  (ED : CE = NP : NC, and NP = PK) 
 
   

 (ratio of inverses) 
 
 
so ep.speed : star speed  =  EP : PC  
 
since  NC  is ultimately equal to PC, and since (the ratio EP : PC being fixed, and that of the 
speeds also being a fixed ratio) there is no longer any reason to say “ultimately.” 
 But EP is half of PT.  So this might lead to suspicion that this is an instance of a 
general rule, which could easily be verified by a procedure like the one above, looking to a 
pair of symmetrical stations, instead of just one of them at P. 
 
 
 
QUESTION:  Does the star ACTUALLY sit still in space (i.e. have an instantaneous velocity of 
zero)?  Or does it just appear to be still, when in fact it is heading right for us or straight away from 
us?  In the simple case of one station, where it happens at perigee, it seems to be a real standstill.  But 
maybe not in the more general case. 
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COPERNICUS 
 

DAY 27 
 
 

TYCHO BRAHE’S SEMI-HELIOCENTRIC MODEL 
 
 
We are now transitioning to the thought of Copernicus. Oddly, however, a very good way 
to transition to the heliocentric vision of Copernicus is by way of the semi-heliocentric 
model of Tycho Brahe, who came after Copernicus. Although this is a bit out of historical 
order, Brahe’s model really is a halfway house from full-blown Ptolemaic geocentrism to 
full-blown Copernican heliocentrism. So here in Day 27, we will spend a little bit of time 
on this transitional figure. 
 
 
 

THE FASCINATING AND STRANGE TYCHO BRAHE 
 
Tycho Brahe was a Danish astronomer who lived from 1546 to 1601. Though that may 
make him sound boring, he was really anything but. He was born the only son to a pair of 
high-ranking Danish aristocrats who for some reason (possibly drunkenness) promised to 
hand him over to the husband’s childless brother. When Tycho was born, however, his 
parents showed no intention of handing him over, and the brother said nothing, so they 
just kept him—until he turned two, that is, and the brother swooped in and claimed him. 
Strangely, the parents did not put up a fight, but handed the boy over. It doesn’t do for 
aristocrats to go back on their word, apparently. And so Tycho was moved from one 
castle to another. 
 Tycho’s uncle (and foster father) Jørgen Brahe intended for Tycho to study law 
and philosophy, but a solar eclipse in 1560 inspired him to become an astronomer 
instead. While he was at the universities of Copenhagen and Leipzig, whenever his tutor 
dozed off, he would put down his law books and observe the stars. In those early days he 
had no more equipment than a globe and a pair of compasses, but that was sufficient to 
enable him to detect significant errors in the Alfonsine and Prutenic tables then used for 
developing the calendar, and to correct them. 
 When he was 20 years old, Brahe got into a mathematical disagreement with 
another Danish aristocrat by the name of Manderup Parsbjerg. Naturally, this led to a 
duel—in which Brahe lost a good chunk of his nose. For the remainder of his life he wore 
a prosthetic one made of metal. It was for a long time thought to be gold, and possibly he 
did have a golden fake nose, but apparently when his body was exhumed in the 20th 
century the nose with which he had been buried turned out to be copper. That is odd, 
since he was certainly wealthy enough to have a gold nose (as we shall see). Some have 
speculated that a copper nose would be much lighter, and therefore more comfortable 
than a golden one. Or did someone steal his gold nose just prior to his burial? No one 
knows. 
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 Tycho Brahe discovered a “new star,” as we read in Arthur Koestler’s 
Sleepwalkers: “On the evening of 11 November, 1572, Tycho was walking from Steen’s 
alchemist laboratory back to supper when, glancing at the sky, he saw a star brighter than 
Venus at her brightest, in a place where no star had been before. The place was a little to 
the north-west of the familiar ‘W’—the constellation of Cassiopeia, which then stood 
near the Zenith. The sight was so incredible that he literally did not believe his eyes; he 
called at first some servants, and then several peasants to confirm the fact there really was 
a star where no star had any business to be. It was there all right, and so bright that later 
on people with sharp eyes could see it even in the middle of the day. And it remained in 
the same spot for 18 months.” It was, in fact, a supernova. Unlike a comet, it stayed in the 
same spot every night among the stars. 
 Publishing and lecturing on this new star won Tycho immediate fame as an 
astronomer, and he was in high demand everywhere. The King of Denmark and Norway, 
Frederick II, wanted to keep this prize at home, however, and managed to do so basically 
by giving Brahe an enormous bribe. In return for serving as the court astrologer, Brahe 
would have the island of Hven for his own on which to build an observatory and a castle, 
and he would also have money enough to equip these as he saw fit. The total amount of 
money going his way is estimated to have been about 5% of Denmark’s GNP at the time– 
Not bad. Brahe accepted this arrangement, and in 1576 built the castle of Uraniborg 
(“fortress of the heavens”). The place had a large number of furnaces for conducting 
other kinds of experiments, too, chemical and medical. It was something of a prototype 
for European research centers. As the telescope had not yet been invented, Tycho was 
still conducting naked-eye astronomy, but taken to the limit. He spared no expense in 
having made gigantic and very finely made instruments to assist in his observations of the 
heavens. For twenty years Brahe made his observations there. 
 When King Frederick II died, however, his 19-year-old son, Christian, took the 
throne, and for some reason Brahe fell entirely out of favor. Some people believe that 
Brahe had had an affair with Frederick’s wife, Christian’s mother, and that this was 
known to Christian. Some people even suspect that Brahe was murdered. He died at a 
banquet, supposedly of a bladder problem, but when his body was exhumed traces of 
mercury were found on the body. Was the mercury something he had been medicating 
himself with for a long time? Or something he inhaled during his chemical experiments? 
Or was it put into his cup at his last supper? No one knows for certain. Some have 
speculated that Brahe was part of the inspiration for Shakespeare’s Hamlet. A Danish 
adulterer with the queen, a young and vengeful heir to the throne, and mercury poisoning. 
 Whatever the cause, when his first patron died in 1588, Tycho fell out of favor, 
and all his former privileges were revoked. Christian IV even withdrew the precious 
observatory from Brahe, although it could hardly have been put to better use in anyone 
else’s hands (except perhaps Kepler’s). But the Holy Roman Emperor invited Brahe in 
1597 to build a new Uraniborg (and to live on a pension of 3000 ducats) upon an estate 
near Prague, in Benatky nad Jizerou. Brahe died before it was completed. 
  Brahe himself was married to a commoner, by whom he had eight children. He 
kept an elk as a pet. Once, while it was away paying some sort of visit to another 
aristocrat, it got drunk on beer, fell down a set of stairs, and died. Brahe also had a “little 
person” as a court jester whose name was Jepp, whom Brahe believed to be clairvoyant. 
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Brahe’s moustache was apparently quite long and eccentric. The odd details of his life 
seem to be endless. Interesting as these are, we are more interested in his work. 
 Some of Brahe’s writings are De Nova Stella (“Concerning the New Star”, 1573), 
Epistolae Astronomicae (“Astronomical Epistles”, 1596), and Astronomiae Instauratae 
Mechanica (a work in which Brahe describes his equipment, 1598). 
 Johannes Kepler served as Brahe’s assistant in the years 1600 and 1601. When 
Brahe died, Kepler took full advantage of the confusion and more or less stole Brahe’s 
records of astronomical data. In life, Brahe had been extremely possessive of this data, 
and did not even permit Kepler to look through it freely. (Some people have speculated 
that Kepler murdered Brahe for the data—but there is no real evidence of that.) Kepler 
thus came into possession of many tables of extremely precise data with which to 
compute the true orbit of Mars, and with which he would discover that the planets move 
on elliptical paths. Brahe’s obsession with precise observations, and the later fruit of this 
arduous labor in the discoveries of Kepler, ushered in the age of precision in astronomical 
measurement. Brahe took this as far as naked eye astronomy could go. He determined the 
length of the solar period to within less than a second, which led to the abandonment of 
the Julian calendar in favor of the Gregorian. 
 Kepler was familiar with Brahe’s precision and accuracy, and took Tycho’s 
observations as infallible and unquestionable. If Brahe’s observations disagreed with the 
Ptolemaic hypothesis by one arc-second, that meant the Ptolemaic hypothesis was simply 
wrong. 
 For now, however, we are mainly interested in Brahe’s own model of the 
planetary motions. Tycho Brahe never accepted the Copernican model, in which the 
planets, including Earth, all go round the sun. Brahe instead supposed that the planets all 
revolve around the mean sun, while the mean sun orbits an immobile Earth. This theory 
was made possible by supposing that the mean sun was inside the epicycles of the inner 
planets (Venus and Mercury) and also inside the moving eccentrics of the outer planets 
(Mars, Jupiter, and Saturn). 
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Note the following in this diagram of Brahe’s Semi-Heliocentric Hypothesis: 
 • The moon goes around the Earth. 
 • The planets all move on epicycles which go around the mean sun at their 
common center. 
 • The inner planets are on same-direction epicycles which are smaller than the 
deferent, i.e. than the sun’s orbit around the Earth. 
 • The outer planets are on opposite-direction epicycles which are larger than the 
deferent, i.e. than the sun’s orbit around the Earth—hence they can also be thought of as 
moving eccentrics spinning about the Earth. The Earth is inside the epicycles of Mars, 
Jupiter, and Saturn, and so these are really moving eccentrics for us, and so the stars must 
move on these in the opposite direction of the eccentrics themselves. 
 • Earth remains immobile and at the center of the universe. 
 • The planetary orbits are drawn roughly to scale (but the sphere of fixed stars is 
drastically diminished to fit it onto the page). 
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How do the speeds S, L, A enter in? 
 • The epicycles of Venus & Mercury move with longitudinal speed L = S, and 
each moves on its epicycle with speed A. 
 • The eccentrics of Mars, Jupiter, Saturn move with speed S = L + A, and each 
moves “backward” on its eccentric with speed A. 
 
 
COMPARISON TO PTOLEMY. 
What is new in the diagram? How does it differ from Ptolemy? Really there is only one 
feature distinguishing this model from the Ptolemaic system: The sun (i.e. the mean sun) 
is inside all the epicycles, i.e. the sun is at the center of all planetary orbits. Perhaps there 
is also this: Ptolemy never really presented us with a single diagram of the universe as he 
understood it. This is partly because he saw that there were equivalent models for each of 
the motions, and partly because he did not know for sure where to place the sun in the 
order of the spheres. But surely it is desirable to have a picture of the universe! Brahe is 
providing us with one here. 
 
 
ADVANTAGES. 
 Unlike the Ptolemaic universe, the Brahean is unified. All the planets (except 
Earth, which to them was not a planet) are orbiting the sun, rather than making epicycles 
at unspecified distances from Earth. And since the sun orbits Earth, the Earth-Sun 
distance becomes a common element in every planetary model, enabling us to compare 
all the distances to one another. 
 
DISADVANTAGES. 
 • Brahe still has everything orbiting the Mean sun, a mathematical fiction. 
 • It is not easy to conceive of a physics that would account for these motions:    
   Why are so many things going around the sun? Is it because it is so big and    
   influential? Then why isn’t the Earth going around it? 
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 • If we make one slight change, and say the Earth is orbiting the sun, and it is the 
sun that is sitting still, then we get the diagram below, i.e. the full-blown heliocentric and 
Copernican model, where everything orbits the sun in concentric circles and in the same 
direction! And the epicycles of Venus & Mercury become mere orbits. As to the 
appearances, these two models can be made perfectly equivalent. The diagrams 
themselves seem to have already made a powerful argument in favor of Copernicus 
already. 
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COPERNICUS 
 

DAY 28 
 
 

INTRODUCTION TO COPERNICUS (1473-1543) 
 
 
BRIEF BIOGRAPHY. 
Nicolaus Copernicus was born February 19, 1473 in Torun, Poland. When his father died, 
his maternal uncle, Lucas Watzelrode, adopted him and his three siblings. This uncle was 
a scholarly priest, and was later made the Bishop of Ermland in 1489. He intended for 
Copernicus to be trained for the church. Copernicus began study at the University of 
Cracow in 1491 where he met and studied under Albert Brudzewski, an expert in 
Ptolemaic astronomy and leader of the humanist movement at the university. Under him 
Copernicus developed a love of mathematics and astronomy and left Cracow without yet 
having obtained a degree. But his uncle then provided him with a living without 
significant conditions attached, leaving Copernicus more or less free to travel and study. 
He went to the University of Bologna, and continued his study of canon law in 
preparation to work for the church as a canon. He was appointed canon of the cathedral 
of Frauenburg in 1497, but immediately took a leave of absence to continue studying. 
From 1501 to 1505 he studied medicine at the medical school at Padua (except for a short 
period in 1503 when he finished his doctorate in canon law). In 1506, when he returned 
to Poland, he was a humanist learned in Greek, mathematics, astronomy, and he was also 
a jurist and a physician. He became physician to his uncle, the bishop, and lived with him 
in the palace of Heilsberg. He was involved in the reconstruction of Ermland after the 
war between Poland and the Teutonic Knights had ended in 1521. He was uninvolved, 
however, in the Reformation. 
 Copernicus first began to develop his own astronomical theory in 1506, but it was 
a long time before it came into publication. He pursued astronomical observations at an 
observatory he himself had established in Frauenberg. In 1514 he was invited by the 
Lateran Council to give advice on the reform of the calendar, but he declined. Only in 
1530 did Copernicus first begin to publish his heliocentric ideas—first in the 
Commentariolus. His ideas attracted a great deal of attention, as one would expect, but 
apparently did not stir up the sort of controversy one would expect, given the fiasco 
involving Galileo in the next century. In Rome, people lectured on Copernicus’ new 
ideas, and Pope Clement VII gave some measure of approval. It was not until after 1540, 
however, that Copernicus was convinced by his friends to allow Joachim Rheticus to 
publish the De Revolutionibus Orbium Coelestium (the work we will be studying in this 
course). Copernicus was shown an advance copy of his book on May 24, 1543—the very 
day he died. 
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THE TITLE OF COPERNICUS’ WORK. 
 The revolutionary book we will be drawing from is De Revolutionibus Orbium 
Coelestium––“On the Revolutions of the Heavenly Spheres.” Copernicus was still a 
believer in the crystalline rotating spheres in the heavens, although he had a very 
different idea from Ptolemy about how they were ordered and how they moved. 
 
 
PREFACE “TO THE READER”. 
 At the outset of the book, there is a little address “To the Reader” which was 
certainly not written by Copernicus, but perhaps by a certain Andrew Osiander, a 
Lutheran theologian and friend of Copernicus. It is certainly not written in the same spirit 
as De Revolutionibus itself! Its main claim is that an astronomer can neither prove the 
truth of any of his hypotheses, nor find out the true causes of the celestial appearances, 
nor can he get any probability about these things. It is his sole job to “save the 
appearances” by the simplest model possible. He is an artist as opposed to a scientist. 
 What motivates this preface “To the Reader”? Putting the Earth in motion and the 
sun at the center of the universe ran contrary to the established scientific view, but to 
many people at the time it also seemed to run contrary to the Bible, because in various 
places the Bible seems to put the Earth at the center and speak as if the sun moved around 
the Earth. To defend Copernicus from too nasty an attack, then, or perhaps to prevent 
attacks on the Scriptures, or avoid conflicts between astronomers and theologians, 
Osiander opens with a disclaimer, as though to say: We do not say this is true, or even 
probable—just a simple way to save the appearances, nothing more. 
 Osiander wishes to give evidence for this agnostic view of astronomy, that it can 
attain to nothing certain or even probable. One example he employs is supposed to be 
paradigmatic or sufficiently representative: the Epicycle of Venus. It is so big, compared 
to its eccentricity, that Venus would appear about 16 times bigger near perigee than when 
it is near apogee, which is against the facts (we saw this back in Day 23). 
 This is just as much a problem for Copernicus as for Ptolemy, although it is 
solved by the phases of Venus, if one makes Venus’s epicycle circle the physical sun as 
its center (or nearly its center). 
 But what is the purpose of astronomy according to the author of this preface, if 
not to find the truth and the real causes of celestial motions? Answer: To “provide a 
correct basis for calculation,” that is, in order to be able to make accurate predictions 
about where and when things will appear in the heavens. But to what end? Not 
astrological (since the author is a Christian). Then for what––navigation? To make 
calendars for the Church? Why should we despair of ever attaining to any real 
understanding of what is going on in the skies above us? Osiander (or whoever authored 
this preface to De Revolutionibus) seems to be motivated too much by fear of conflict 
between science and faith. 
 
PREFACE & DEDICATION TO POPE PAUL III. 
 Copernicus actually did write the preface and dedication to Pope Paul III. Does it 
say the same thing as the Preface “To the Reader”? Does it endorse a complete 
agnosticism about the truth concerning celestial appearances? 
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 No. Certainly he is cautious, but he seems more anxious to defend the 
reasonability of his hypothesis, even its superiority to the old view, which seems to make 
the universe into a strangely unintelligible heap of disconnected things. He finds fault 
with the old view not so much for being inaccurate (in predicting where things will be 
when), but for being incoherent, impossible, full of coincidences etc. This sounds like a 
concern for truth! 
 What, specifically, led Copernicus to begin astronomy afresh? He tells us himself: 
 a. Disagreement among experts. 
 b. Disagreement with the phenomena. 
 c. Inconsistency of principles. 
 d. Inability to explain the most desirable quantities (and a decided lack of unity 
and harmony and simplicity in the whole system). 
 
More specifically: 
 a. “Mathematicians have not agreed with each other,” he says. This is the first 
sign of a problem. “They do not assume the same principles, assumptions, or 
demonstrations for the revolutions and apparent movements.” (If the “experts” cannot 
agree, then why shouldn’t Copernicus be allowed to propose his own ideas?) 
 b. “They have not been able to establish anything for certain that would fully 
correspond to the phenomena,” he adds. None of the existing theories exactly predict the 
motions of the heavenly bodies. 
 c. “They have in the meanwhile admitted a great deal which seems to contradict 
the first principles of regularity of movement.” We saw an instance of this even as far 
back as Ptolemy: the equant. The center of the equant-circle was not the center of the 
actual circular track that the epicycle’s center moved around, but was only the center of 
the uniformity of angular velocity. Copernicus wants to be as consistent as possible, and 
make heavenly bodies move only on circles whose centers are the points around which 
they move uniformly. So we are still hanging on to that old “Astronomer’s Axiom,” and 
if anything, we are clinging to it a bit more than we did with Ptolemy! 
 d. “They have not been able to discover or to infer the chief point of all, i.e. the 
form of the world and the certain commensurability of its parts.” Ptolemy did not give us 
a single picture of the universe, nor did he tell us what the ratios were between the 
distances in the various planetary hypotheses. How big is Mars’s eccentric compared to 
Jupiter’s? Ptolemy will not commit himself. So his theory is really like a dismembered 
body rather than a unified whole. But surely the universe is a unified whole. So 
something crucial is missing from the picture. 
 
 
 
 
 Copernicus suggests that his system, as soon as he assumed that the Earth’s 
rotation accounts for the daily movement, and its orbit around the sun for the sun’s 
apparent yearly motion, immediately committed him to many things and decided many 
things for him. He could not play around with it and do as he liked the way Ptolemy 
could. He proposes this, it seems, as a sign of the truth of his system. It exhibits a certain 
necessity with which everything falls into place. 
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WHAT’S TYCHO’S PROBLEM, ANYWAY?  
Looking back to Tycho Brahe’s semi-copernican hypothesis, one might wonder why he 
(or anyone else) would hesitate to adopt the Copernican model. The two models, i.e. the 
semi-heliocentric and the full-on-heliocentric, can be made entirely equivalent as to the 
appearances. So why not prefer the simpler Copernican view?  
 For one thing, there were physical problems, in particular not feeling the 
movement of the Earth, whereas Copernicus requires the earth to be in motion—both 
spinning on its axis to explain the daily motion in the heavens, and again orbiting the sun 
once a year to explain the sun’s apparent annual motion. 
 For another thing (and possibly this was the bigger issue), to make the earth move 
around the immobile sun at the center is to make the earth a planet, i.e. a star, i.e. a 
celestial body, which is to make the celestial bodies terrestrial. The whole idea of “the 
heavens” changes, the whole world-view changes. The heavens are brought down to 
Earth, and Earth is placed in the heavens. The heavens are no longer other-worldly, made 
of incorruptible quintessential stuff. Instead, they are Earthy, like Earth. A great deal of 
cosmology had been built on those old ideas, and no one seemed ready to replace them 
with anything. 
 For still another thing, Copernicus still has things moving on solid crystalline 
spheres. But Tycho Brahe correctly showed that this was impossible by showing that the 
trajectories of comets took them right through the spheres of the various planets! Why 
didn’t the comets smash holes in the spheres? Or why didn’t they themselves smash to 
bits against a sphere? 
 
 
DE REVOLUTIONIBUS, 1.1-2, 1.4-5 
 
Now we come to the book itself. Copernicus opens with an introduction to the work in 
the classical style, in which he outlines the dignity, the place, the utility, and the difficulty 
of his science or art. 
 He calls it the “head of the liberal arts,” on the grounds that its matter is superior 
to that of the other liberal arts, and on the grounds that the other arts are in its service (or 
used by it). Certainly the ones dealing with words (grammar, rhetoric, logic) deal with a 
matter which is more human, and less divine, and less worthwhile in itself. And if 
arithmetic is studied to some extent for the liberal art of music (which is to some extent 
studied as preparation for ethics and political philosophy), and geometry is to some extent 
for astronomy (which is to some extent studied as preparation for natural philosophy and 
metaphysics), in the order of the liberal arts toward philosophy and theology, then 
Copernicus seems to be largely right. 
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Chapter 1 
 
In Chapter 1 of Book 1 of De Revolutionibus, Copernicus assumes that the universe is 
spherical. 
 Is this plausible? His reasons are largely from fittingness, or from precedence. For 
example, this is the shape of the sun, the moon, the earth, and he even says we find a 
precedent for this shape “in the case of drops of water and other liquid bodies, when they 
become delimited of themselves.” That is interesting—he is already thinking more 
physically than Ptolemy did. And very inductively (as Newton will do later). 
 The earth is a (near) sphere because of the downward tendency of all its parts to 
the center. This shape is the effect of gravity. But a soap bubble in the air is a (near) 
sphere because of the random bangings of air molecules inside the film of soap—there is 
no more banging in one direction than another, so one gets a sphere, the shape of 
indifference. 
 This chapter certainly does not settle the question. But if the universe is finite and 
bounded, then the sphere seems to be the simplest shape, and to be a shape which results 
naturally (or at any rate automatically) from many different principles out there. So it is 
plausible. 
 
 

Chapter 2 
 

 
In Chapter 2, Copernicus is arguing that the earth is a sphere. 
 a. One piece of evidence: as you travel north, the North Celestial Pole moves 
more and more overhead. 
 b. More specifically, in places equidistant from the North Terrestrial Pole (same 
latitude) the Celestial Pole will cut the meridian in the same ratio (or, more simply, will 
have the same height above the horizon). 
 a. & b. are supposed to prove Earth is a sphere going from north to south. 
 c. If you see an eclipse (solar or lunar) in the evening, i.e. near the west, people in 
the east do not see them; which shows Earth bulges up or is convex in between you and 
them. So Earth is round going from west to east, too. 
 d. And you can see land from the top of a ship’s mast before you can see it from 
the deck; and again land appears to rise up out of the sea or sink down into it, which all 
shows that the water bulges up in between, so that the ocean is convex. But water wants 
to be flat, or does not have any more convexity than the surface it rests on. So Earth is 
round. 
 Note that these arguments are basically the same as the ones which Ptolemy 
advanced for the spherical shape of Earth. 
 In Chapter 3, Ptolemy pursues the sphericity of the Earth a bit more. He mentions 
America in that chapter, which he says geometrical reasons compel us to believe is 
“diametrically opposite to the India of the Ganges.” He mentions the erroneous opinions 
of various ancients concerning the shape of the Earth—Empedocles thought it was a 
plane, Leucippus that it was a “tympanoid,” Aniximander thought it was a cylinder, and 
so on. 
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Chapter 4 
 
In Chapter 4, Copernicus is arguing that celestial bodies move uniformly and 
everlastingly in circles. This is the old “Astronomer’s Axiom” which Ptolemy and 
Aristotle and Plato also accepted, long before Copernicus. 
 What support does he give for this idea? 
 That they move in circles he assumes follows from their shape, i.e. that they are 
spherical. But that’s a bit weird: the earth rotates, and that is in keeping with its shape, 
but then the earth is not a natural body, but a bunch of natural bodies crammed together, 
it seems, so it does not really have a “natural motion” of its own, does it? Even weirder, 
the earth must now rotate around the sun—but what has that motion to do with the shape 
of the earth? He is still a believer in heavenly spheres (hence the title of the book), in 
which the stars are fixed. So it seems we are to believe that the earth is embedded in a 
crystal sphere. Already there are theoretical weaknesses here. 
 
 He describes some of the basic motions; the “daily” motion from east to west, the 
“antagonistic” motion from west to east—that of the moon giving us the month, that of 
the sun giving us the year (about the poles of the ecliptic). 
 
 He insists on the Ptolemaic principle of perfect circles and perfect uniformity of 
speed, “since it is impossible that a simple heavenly body should be moved irregularly by 
a single sphere”, “For that would have to take place either on account of the inconstancy 
of the motor virtue” (God or an angel or the soul of a heavenly sphere getting tired or 
sloppy, or else the celestial Nature not always being the same) “or on account of the 
inequality between it and the moved body” (some inequality or inconstancy in the degree 
to which the same power is effective on the body, as though it got closer to the power 
sometimes, and further at other times—which is absurd if the power is incorporeal, or is 
the nature of the body itself). But none of that will do—“since the mind shudders at either 
of these suppositions.” That is supposed to be the “best system” up there, after all! 
 Hence, if there appears to be any irregularity of speed or direction, this is merely 
apparent, and can be explained as a property of the place from which we are observing 
the motion. 
 So he does not differ substantially from Ptolemy in this regard. 
 But in a way he is already not entirely consistent with himself—he wants us to 
believe in the perfect uniformity of motion in bodies which are no longer divine and 
immortal, or not any more than the earth is! 
 If Plato, Aristotle, and Ptolemy could ever have become convinced that Earth is 
moving around the sun and is itself just another one of the planets, so that those “divine 
wandering stars” are no more “divine” than Earth is, then they probably would have 
started seriously re-thinking the notion that things up there move in perfect circles and at 
perfectly uniform speeds. And if they also knew what Tycho Brahe knew, that the comets 
move right through all the supposed invisible spheres carrying the planets around, they 
certainly would have started all their thinking about the heavens over again. 
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Chapter 5 
 
In Chapter 5, Copernicus gives reasons for saying (or at least considering the possibility) 
that the Earth has some motion: 
 a. In principle, an apparent motion of X can be due either to the motion of X, or to 
the motion of the observer of X, or to both. (Imagine being on a train next to another 
train—sometimes it is hard to tell whether you are moving or the train next to you is 
moving or both.) Now by the daily motion the whole universe seems to be carried 
around. So if we say instead this motion really belongs to the earth, in the other direction, 
we would see just what we see up there, with regard to the daily motion of the sun, moon, 
stars, planets. (Ptolemy himself admits that this is simpler; instead of giving, 
coincidentally, as it were, the same daily motion to all those things, we just give it to the 
earth.) 
 b. The universe contains (it is a place), the earth is contained (it is in place). Why 
not give the motion to the thing in place, to the contained, rather than to the container? 
(One could take this a step further: for the earth to spin makes sense, since it has a 
reference outside it. But what would it mean for the universe to “spin” if there is nothing 
outside it which is the immobile reference for that spinning? This might not be 
unintelligible, but it is odd.) 
 c. Some ancients attributed daily motion to the earth, and some even said that the 
earth is a planet. 
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COPERNICUS 
 

DAY 29 
 
 

BASICS OF COPERNICAN THEORY 
 
 
De Revolutionibus, 1.6-8 
 

Chapter 6 
 
The title of this chapter is: On the Immensity of the Heavens in Relation to the Magnitude 
of the Earth. This is reminiscent of Ptolemy’s the earth is as a point to the heavens. But 
Copernicus is bringing this up to show how this immensity opens the door to the idea that 
the Earth might in fact have a motion other than just spinning, e.g. it might have an orbit 
around the sun, and the sun might be at rest in the center instead. And that orbit might be 
small enough, compared to the sphere of fixed stars, that it would not enable us to detect 
any (naked-eye) parallax on them. 
 
Copernicus repeats the main argument for the immensity of the heavens compared to the 
Earth: 
 Since at one time we see six signs but not the other six, then at another time we 
see the other six but not the first six, therefore each group of six forms a semicircle of the 
ecliptic, the great circle on the Celestial Sphere (in which he still believes, although it no 
longer has a real job to do! The circular motion of the stars was the main reason to 
suppose that the stars were on a big sphere, and that motion is about to be taken away 
from them for good). Therefore, when we see the first six, we are on a diameter of the 
ecliptic, and when we see any other six we are on a different diameter of the ecliptic, and 
therefore we are at the center of the ecliptic, and therefore at the center of a great celestial 
circle. Therefore our horizon is a great circle. 
 But this is equally true all over the earth, and so there is no (sensible) difference 
between the horizon through my eye and the plane parallel to it through the center of the 
earth. Therefore the earth has no appreciable size compared to the celestial sphere. 
 
Copernicus says next that it does not follow that the earth must be at rest at the centre of 
the world. 
 One might think it would follow, since along the way we said we are at the center 
of the universe, i.e. on two diameters of the celestial sphere. How can we wander from 
the center? 
 But precisely because the earth is so tiny, just as all these phenomena “are equally 
true all over the earth,” so too, perhaps, because its orbit around the sun is so tiny 
(compared to the celestial sphere), all these phenomena are equally true at any point 
along Earth’s orbit. Copernicus is not quite this explicit, but it seems to be what he is 
driving at. 
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In this chapter, Copernicus also seems to be addressing the view that the Earth 
cannot be moving very much precisely because it is close to the center of the universe, as 
though it were a grain of sand near the center of a vinyl record, so it moves very little in 
the same time as things near the rim move a lot. But in that view, the “daily motion” 
would still be a movement of the whole universe, not Earth’s rotation—so we must 
imagine Earth not spinning, but making a tiny orbit each day, and he says it is as clear as 
“daylight [pun intended!] how false that is,” since there would always be noon in one 
place on Earth, and always midnight at another, and the sun would not rise and set (so 
that the sun and the earth would be like two spots on a record). 
 And he goes on: since the planets and their spheres all have natures different from 
each other, therefore the speeds are not all of one angular velocity, but the inner planets, 
for instance, go around the zodiac once a lot faster than the outer ones do. 
 
 

Chapter 7 
 
The next chapter is about ARGUMENTS FOR A STATIONARY EARTH. 
 
Here Copernicus recounts some Ptolemaic and Aristotelian arguments for geocentrism 
(which stands or falls with Earth sitting still or moving). 
 
(a) Ptolemy’s first argument for a stationary Earth was that what is heavy endeavors to 
get to the center and rest there. 
 
(b) The next argument for an immobile Earth is based on the Aristotelian view that the 
movement of a body which is one and simple is simple, and the simple movements are 
rectilinear and circular. And of the rectilinear type of movement, one is up, the other is 
down. But earth and water (“simple” bodies), which are heavy, tend down, i.e. to the 
center. So it seems fitting to give the four elements rectilinear motions, and the heavenly 
bodies circular ones. 
 
(c) The third argument is based on the Ptolemaic view that “things which are suddenly 
and violently whirled around are seen to be utterly unfitted for reuniting, and the more 
unified are seen to become dispersed, unless some constant force constrains them to stick 
together.” 
 Basically, since you feel it when you are whipped around in a circle, as on a 
merry-go-round, you would feel it all the more if Earth whipped around at a 1000 mph. 
Things would fly off and apart with such a speed of such a prodigious body. But you 
don’t feel that. So Earth is at rest. 
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Chapter 8 

 
 

REFUTATION OF ARGUMENTS 
FOR A STATIONARY EARTH 

 
 
Copernicus now addresses arguments such as these. 
 
 
 PTOLEMY’S VIOLENT ARGUMENT. Against (c) above, Copernicus says that 
things would not be thrown apart by the circular motion of Earth if that motion is not 
violent, but natural, and hence a movement which all contribute to and partake in 
smoothly. Or, if Ptolemy denies this, why did he feel no anxiety about the universe itself 
being torn apart by its even greater speed? 
 (There is something to this. Something must be capable of moving with a great 
rotation without flying apart, whether it is the earth or the heaven. But there are 
weaknesses, here, too. The earth is made of stuff which we know can fly apart. When you 
spin mud, it likes to fly off on straight lines along the tangents, it does not “like” to move 
in a circle. So this reply of Copernicus does not adequately explain why we do not feel 
the motion of the earth. Also, if “earthy stuff” has a “natural motion,” isn’t it the motion 
in a straight line down? So if we also say the earth has a natural motion in a circle about 
its own axis, aren’t we saying it has two natural motions at once? In fact, don’t we have 
to add at least one more, since the earth also, on this view, will be orbiting the sun? Well, 
then, does the simple body of the earth have two natural motions? We will see how 
Copernicus will address this below.) 
 He mentions that someone might reply to him that the heavens do fly apart, and 
that is why they are so spread out and huge (as Anaxagoras might have said). He replies: 
but then the heavens would have to be infinite, since the speed increases the size, and the 
size increases the speed (since it keeps going round once in 24 hours, regardless of the 
radius). But what is infinite cannot be traversed, and from this it follows the universe 
cannot spin, but must be at rest. 
 (If you think this argument is strange, you are not alone!) 
 He says we can’t really know whether the universe has limits, anyway 
(interesting), but we know the earth does, and it is round, so why not give it the natural 
motion that accords with its shape, i.e. moving in a circle, “rather than put the whole” 
universe “in commotion”? 
 (Again, there is some weakness in this, since the earth is not a natural body, but 
more like a collection of them; also, is it true that everything spherical likes to move in a 
circle?) 
 He gives an example: Sailors feel as though their ship is at rest, and it seems like 
the land comes to them. Why can’t the earth be like that? Its movement is unfelt, and it 
only looks like other things are moving, but the motion really belongs to the earth? 
 (That is better!) 
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 PTOLEMY’S CLOUD ARGUMENT. Ptolemy argued that if the earth spun then 
the clouds would all move one way (in the direction opposite the spinning of the earth). 
To this Copernicus replies that nothing prevents us from supposing the atmosphere, too, 
spins with the earth, “and whatever other things have a similar kinship with the earth.” 
He suggests that this is either because the atmosphere, having earthy and watery stuff in 
it, “obeys the same nature as the earth,” or else its motion is “acquired,” as if it had been 
set spinning by the earth. 
 
 COMETS. Copernicus is aware that someone might bring up comets (or “bearded 
stars”) as evidence against him. Copernicus is saying that everything “earthy” would 
share in the spinning motion of Earth, our atmosphere included. But then why, someone 
might ask, do the comets not spin together with Earth, but rise and set like the stars do? 
Comets were presumed, even in the time of Copernicus, to be unheavenly things, because 
they were generated and corrupted. Stars and planets never changed, never ceased to be, 
never came to be, but comets suddenly appeared and then again disappeared. It was 
presumed they were coming into existence, rather than just coming into view! Hence they 
were more like Earth than the heavens, and it was presumed that their place was in our 
upper atmosphere, that is, still in the realm of the generable and corruptible, in the 
sublunar sphere. Copernicus replies to this by saying that comets are so high in our 
atmosphere that at that place the atmosphere does not share in the spinning of Earth, just 
as Ptolemy said would happen generally for our whole atmosphere. (The truth is that 
comets are on very elliptical orbits, and they are relatively small compared, say, to 
Jupiter, and so they become visible only when they are at the solar end of their orbits, but 
then they pass out of naked-eye view again for the much longer portion of their orbits. 
Copernicus seems to think of the heavens as still “heavenly,” although that is rather odd 
if Earth is among the planets moving about the sun! Tycho Brahe saw the implications of 
this more clearly than Copernicus, apparently, and so he was unwilling to make Earth 
effectively one of the heavenly bodies. Tycho also discovered a supernova—which 
proved once and for all that things can come to be and cease to be even among the fixed 
stars.) 
 There is another way to verify that the comets are in fact not in our atmosphere. 
There is a visible parallax of the moon and also of comets—and it is less pronounced for 
comets. Hence they are further away than the moon! And this would have been 
observable perhaps even by Ptolemy (had he bothered to check), and certainly by 
Copernicus. At any rate, just after Copernicus, Tycho Brahe observed comets very 
carefully and showed that their paths went through the supposed spheres, and hence 
destroyed the crystalline spheres idea forever. So it seems that Brahe got around the 
problem of comets by maintaining that everything up there is celestial, but the comets are 
not generated and corrupted, they just get closer and come within view. (But how did he 
account for the supernova, the “new star,” which just stayed in the same place? Here he 
was seeing the death of a star, and yet refused to admit that the stars suffer death!) 
 
 
 
Copernicus’s RESPONSE TO ARISTOTLE’s ideas about natural motion is a bit prolix. 
He concedes that a simple body has a simple motion so long as it is in its natural unity 
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(integrity) and in its natural place. What he seems to be getting at is this: Yes, when you 
take a piece of Earth away from its natural whole, the earth, it has a new motion 
downward, toward the center, trying to get back to the whole to which it belongs—it is 
“sickly,” not as it ought to be, violently shoved away from where it is supposed to go. 
Hence its motion in that condition is also “sickly”: it is not moving as it likes to, but 
moving back to where it wants to be so that it can move as it likes to. And all rectilinear 
motion is that way, i.e. an endeavor to get back into the right place or back into the 
whole. Hence the only truly natural motion, which can belong to a thing when it is in its 
right place and in its proper whole, is circular motion, by which it does not really move 
out of its place or out of its whole. So the earth can rotate, since that is not contrary to the 
“earthy nature,” but just what it does in its natural place and in its natural whole (and 
presumably, too, the celestial sphere in which the earth is embedded has its own natural 
rotational motion). The earth, then, does not really have two natural motions, but one (i.e. 
in a circle). The downward motions of its parts are not entirely natural, but the motions 
they have when they are in an unnatural place. 
 
ADDITIONAL ARGUMENTS. Copernicus now adds this: immobility and rest are more 
godlike, motion is more earthly and pertains more to mutable things. So, given the 
choice, we should prefer to assign motion to the earth rather than to the heavens. (Notice 
again that Copernicus still insists on the distinction between the earth and the heavenly 
bodies, although he is placing it among them and making it move with them and like 
them!) 
 And again: it seems absurd to assign motion to the container (the universe) rather 
than to the thing contained (the earth). 
 And again: the appearances make it plain that the planets are sometimes closer to 
the earth and sometimes further away. Hence they do not keep the same distance from the 
center of the earth (contrary to what Aristotle thought). Therefore they move around other 
centers besides the center of the earth—which means there seems to be no necessity in 
saying they move uniformly, somehow, around the center of the earth; but maybe it is 
enough to say they move uniformly around their own centers. 
 
Copernicus finishes with the remark “For all these reasons it is more probable that the 
earth moves than that it is at rest.” That does not sound like the agnosticism of the 
opening foreword “To the Reader”! 
 
 
 
 
 
WHY DON’T WE FEEL THE MOTION OF THE Earth? 
 This is a fair question for any of us who agree with Copernicus (as most of us do) 
that the earth spins on its axis every 24 hours or so. To see the answer well, we would 
first need to have a big discussion about inertia, and establish that uniform motion in a 
straight line does not feel any different from rest. Now your motion with the earth, when 
you stand still on some part of it, consists partly in this inertial component, which feels 
just like rest, but also it is a little bit curved. 
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 Now, is that curve enough for us to feel? 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 If you stand on Earth’s North Pole, you will turn round once every 24 hours. If I 
put you on a turn-table that did that, you wouldn’t feel it, either—just like you don’t see 
the motion of the hour-hand on a clock. (If it turned once every second you would feel it; 
your blood would shoot out to your fingertips if you held your hands out.) 
 But what if you are somewhere closer to Earth’s equator? Then you make a giant 
circle in 24 hours—but take what you do in one minute, and it is mostly straight, and 
uniform. Sufficiently so that you don’t feel it. Moreover, you never get closer to or 
further from the center of the earth, and therefore you don’t get the “plummeting” feeling 
in your stomach (which happens from the sudden removal of the pressure of soft stuff 
against stiffer stuff in your body which you are used to feeling all the time). 
 Consider a particular location on Earth––Santa Paula, California, for instance. 
Since Santa Paula is at S, where arc ES = 35° (about), therefore Santa Paula traces out 
circle SALB every 24 hrs. 
 ∠CSM = ∠SCE = 35° 
so ∠SCM = 180° – 90° – 35° = 55° 
Calling CS “1”, it follows that 
 SM = sin∠SCM = sin55° = .819152044 
So, calling CS “3960 miles” (the radius of Earth) 
 SM = (.819152044)(3960) = 3243 miles. 
Hence the circumference of circle SALB is determined: 
 SALB = 2 π r = 2 π (SM) = 2 π (3243) miles = 20,381 miles. 
Now Santa Paula makes that circle once in 24 hours, uniformly (pretty much). 
So Santa Paula goes 20381 miles in 24 hours. 
So it goes 849.2 miles in 1 hour. 
So it goes 14.2 miles in 1 minute. 
 Now, how curved is that 14.2 miles? Let the 14.2 mile arc be called arc SG. 
 Well, since the arcs are as the angles, 14.2 miles has to 20831 miles the same ratio 
that the angle SMG has to 360° (the full circle). Solving, ∠SMG = .2508° (about one 
quarter of a degree). 
 Make ∠GMH half of ∠SMG, SHG being the chord. 
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 Hence ∠GMH = ½ ∠SMG = .1254° 
 So ∠MGH = 180° – 90° – .1254° = 89.8746° 
Calling MG “1”, MH = sin∠MGH = sin(89.8746°) = .999997605 
Calling MG “3243 miles,” MH = (.999997605)(3243) = 3242.992233 miles. 
 Now FH = MF – MH = 3243 – 3242.992233 = .007766 miles. 
 But 1 mile is 5280 feet, so FH = (.007766)(5280) feet = 41 feet. 
 
So, in Santa Paula, in one minute, we move 14.2 miles in arc SFG, but only up to a height 
of 41 feet above the straight line SG, and back down. Now, suppose you are on a very 
smoothly operating elevator, and it lifts you up 41 feet and back down in 60 seconds. 
Will you feel it? No. That means going up 20 feet, smoothly, in 30 seconds. Imagine 
being on a plane, in clear skies without turbulence. The jet goes up 20 feet in 30 seconds. 
Do you notice that? No way. 
 Also, on Earth you are always shifting thus—you don’t start doing it and then 
stop and then start again. 
 And although you effectively weigh slightly less due to the “throwing out” of the 
earth’s motion (as the equator bulges a bit), this is not only slight, but constant, so you 
never feel your weight shift. 
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COPERNICUS 
 

DAY 30 
 
 

THEORETICAL REASONS FOR PREFERRING THE COPERNICAN MODEL, 
AND A DETERMINATION OF THE DIRECTIONS IN WHICH PLANETS MUST MOVE. 

 
 
In De Revolutionibus 1.10, Copernicus begins to build up his model of the universe. 
 
1. He says everyone is agreed that the heaven of the fixed stars is the highest up, i.e. the 
furthest away from us, of all the celestial objects. 
 
2. Also, the ancient philosophers are in agreement about the moon being closest, and 
Saturn the furthest, among the wandering stars. After Saturn, Jupiter is the next closest to 
us, then Mars is closer still. 
 
3. About Venus and Mercury there is some disagreement. 
 Ptolemy says “both below the sun” because 
 (a) Venus and Mercury are tied to the sun differently from the way the outer 
planets are, and therefore it is natural to separate them by the solar sphere. (A bit lame.) 
Also, because . . . 
 (b) they fill up the space between Earth and sun so nicely (see p.522, “in order for 
such a vast space not to remain empty”). That is an argument, apparently, from aesthetic 
considerations. Ptolemy and his followers say we do not see phases or transits either 
because Venus and Mercury glow with their own light, or the sun lights them right 
through, or because “they are small bodies in comparison with the sun, . . . and therefore 
it would not be easy to see such a little speck in the midst of such beaming light.” (p523) 
 Alpetragius says “Venus above, Mercury below,” but gives 
 (c) no reason. 
 Platonists say “both above,” because 
 (d) if below, we would see solar transits, but we don’t. (This is a feeble argument, 
however. You don’t see them with the naked eye only because the little planet gets 
swallowed in the light of the sun.) Also, because 
 (e) if below, Venus and Mercury would exhibit phases (the Platonists assume, 
correctly, that the planets receive their light from the sun), but they don’t seem to do so. 
(Again, not a very strong argument, at least not today. They do exhibit phases; it is just 
difficult or impossible to observe them with the naked eye.) 
 
4. Copernicus finds fault with Ptolemy’s view. He says that Venus’s epicycle, according 
to Ptolemy, is huge. So what fills up all that empty space? 
 Again, the idea that the sun must be between the “inner” planets and the “outer” 
ones because this naturally divides those which have a limited elongation from the sun 
from those which have a limited one, is nonsense—the moon, after all, also has unlimited 
elongation from the sun. So, then, should we say it is further away from us than the sun, 
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and belongs with the outer planets? (The moon comes between us and the sun, 
sometimes, remember!) 
 
5. GENERAL ARGUMENT FOR SAYING PLANETS CIRCLE THE SUN. 
 Based on the foregoing indecision of the geocentrists, Copernicus says we must 
choose: either there is no sure reason why Saturn is furthest out, Jupiter next, and for the 
order in general, or the planets must circle some center other than Earth. Again, either we 
can give no reason why Venus & Mercury have limited elongations from the sun (and so 
for them S = L), or these planets go around the sun. 
 This, in general, is how he will argue: assume that the planets, including Earth, all 
go around the sun, and only then can we give a reason for the order of the planets, for 
limited elongations or unlimited ones, for S = L, for S = L + A, for the planet being at 
perigee when in solar opposition, etc. Otherwise, these are merely additional facts (or 
assumptions) for which there is no reason, and the universe is largely unintelligible. 
 
 
 
 
 
 
 
 
 
 
 
 
 
6. VENUS GOES AROUND THE SUN. 
 Why must the Ptolemaic epicycle of Venus travel with the speed of the mean sun? 
To Ptolemy, it is just a cosmic coincidence. If we assume Earth is the center, there is no 
necessity to it. It is an ad hoc assumption added into the hypothesis sheerly because the 
appearances demand it. There can be no cause given. Thus Ptolemy. 
 But for Copernicus, obviously Venus can never appear (from Earth) to be a 
greater angle from the sun than ∠AES or ∠BES, because it circles the sun as its center, 
and we do too, and our orbit contains the Venusian one, so the furthest it can get from the 
sun, in our view, is the angle formed by sun-Earth-Tangent. And since there is a limit to 
how far Venus can appear from the sun, it will also, on average, travel with the speed of 
the Mean sun, i.e. S = L. 
 Since we can give a reason for the truth in one case, but cannot give one in the 
other, the Copernican hypothesis is more probable. The same works for both inner 
planets. 
 Again, on this hypothesis, we can say that Mercury’s orbit is inside of Venus’s, 
which is WHY its maximum elongations from the sun are less than those of Venus. No 
reason can be given for this in Ptolemy. It must be simply assumed as a mere 
coincidence. 
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7. MARS GOES AROUND THE SUN. 
 Ptolemy assumes that Mars is at apogee when it is in solar conjunction, and at 
perigee when it is in solar opposition. 
 But why must this be so? Why must Mars be at Mc when it is in conjunction with 
the sun? Nothing in the figure necessitates that. It could just as well be at P, and then it 
would be at perigee, not apogee. Likewise Mars need not be at Mo when in opposition; it 
could just as well be at A, putting it at apogee. The reverse is assumed only to match the 
appearances (presumably). Thus Ptolemy. 
 For Copernicus, however, it is a necessity just from the geometry of the figure 
that Mars be at apogee when in solar conjunction (at Mc) and at perigee when in solar 
opposition (at Mo). Switching the M’s obviously makes no difference, and neither would 
moving the Earth to A make any difference to the rule. 
 So, since we can give a reason for the facts on the Copernican hypothesis, but not 
on the Ptolemaic one, the Copernican one is more probably the truth. 
 The same goes for Jupiter & Saturn. 
 
8. THE EARTH ORBITS THE SUN.  

Copernicus gives a reason for this which assumes that Venus and Mars go round 
the sun. If he is right in saying that Venus orbits the sun, and so does Mars, and we are 
outside the sphere of Venus, and the sphere of Mars is outside us, then we are in the 
spherical space between these spheres. If you think of those spheres as hard, crystalline 
things that cannot interpenetrate, then we are free to move (together with our Moon) only 
inside that spherical space between—which is around the sun. 
 
9. THE SUN IS IMMOBILE. Copernicus asserts next that the sun does not move: “the 
center of the world [i.e. universe] is around the sun. I also say that the sun remains 
forever immobile and that whatever apparent movement belongs to it can be verified of 
the mobility of the earth.” Whatever movements the sun appears to have are really due to 
movements that we, the observers on Earth, have. Nevertheless, there is some ambiguity 
in this—do the planets orbit the physical sun, or the “mean sun”? 
 
10. THE SOLAR SYSTEM IS TINY. Here Copernicus asserts what he must assert, 
namely that not only Earth, but even all the spheres around the sun, are as a point 
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compared to the sphere of fixed stars. This is an advance in the understanding of the 
dimensions of the universe. 
 And he repeats the idea that his theory is the more convincing because it is 
simpler—i.e., it uses fewer spheres, and it makes one thing, namely the motion of Earth, 
the cause of many effects. 
 
11. IN WHAT DIRECTION DOES 
THE EARTH MOVE? Copernicus 
assumes that all the planets, 
including Earth, are going in the 
same direction around the sun. 
Assuming Ptolemy’s system 
basically agrees with the 
appearances, we can see why 
Copernicus concludes this. 
 In Ptolemy, all the planets 
have a basic “eastward” or 
“antagonistic” or “backward” or 
“motion of the other” movement 
through the zodiac. That includes the 
sun. All these motions, we saw, 
could be explained by putting the 
inner planets on same-direction 
epicycles around the sun as center, 
and the outer planets on opposite-
direction epicycles (or moving 
eccentrics) about the sun as center, 
but large enough to contain the earth 
inside those epicycles. Meanwhile, 
the moon, too, has a “backward” motion, but it moves faster than the sun (it gets further 
east of the sun by about 40 minutes a day, i.e. it goes around once in about 30 days). 
 In the semi-heliocentric model, the earth is immobile, and the sun moves around 
it, together with everything that moves around the sun. What must we say is happening, 
then, if we say that the sun is sitting still? 
 (a) We must say that all the seeming motion of the sun is due to our motion 
around it. So the sun does not make its circle 
around us, but we make an equal circle around 
it. 
 (b) And since the sun appears to move 
counter-clockwise around us, we must in fact 
be moving counter-clockwise around it, to 
keep the Earth-sun line pointing at the same 
stars. Take any relative position of Earth and 
sun, at E and S. Then the sun appears to be in 
location Z in the zodiac. If we let the sun 
move from S to A around us, then it appears to 
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be at L in the zodiac. The only way to get it to appear in the same place in the zodiac if 
Earth moves around the sun (at the same speed the sun seems to move around the earth) 
is if Earth moves from E to B, so that arc EB is equal to arc SA. For then BS will be 
parallel to EA, and so BS will also point to L (since the distance between the parallels EA 
and BS is insignificant compared to the distance out to the fixed stars). 
 
12. IN WHAT DIRECTION DO THE INNER PLANETS MOVE? 
 (a) The INNER PLANETS continue to move counter-clockwise, but their 
epicycles are now simply their orbits, since the movement of their epicycles on the 
deferent (i.e. of the sun around Earth) has now been replaced by the movement of Earth 
around the sun. Suppose E is Earth, S is the sun, and V is Venus on its epicycle, 
appearing at N in the stars (solar conjunction, just for fun). For Ptolemy, as the sun goes 
from S to A, we let Venus go from V (i.e. D) to T on its epicycle, so that Venus appears 
out along line ETP. So for Copernicus, to keep the appearances the same, we must let 
Earth go from E to R so that arc ER = arc SA. Then we draw RU parallel to ET, and 
place Venus at U. From the parallels RU and ET we see that Venus will again appear at P 
in the fixed stars, so that the hypothesis is now equivalent. 
 (b) But notice the difference! For Ptolemy, Venus traveled only ∠DAT on its 
epicycle, while in the same time, for Copernicus, it went ∠VSU around the sun. But 
∠DAT = ∠BSU (since RS is parallel to EA, and RU to ET). So Copernicus has Venus go 
∠BSV more around the sun than Ptolemy did, in order to get the same appearances. And, 
of course, ∠BSV = ∠ESR (vertical), which is the amount of angle the Earth travelled 
around the sun. So Earth’s motion “undoes” a certain amount of Venus’s motion, 
because they are in the same direction. 
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13. IN WHAT DIRECTION DO THE OUTER PLANETS MOVE? 
 The OUTER PLANETS must reverse direction on their opposite-direction 
epicycles or moving eccentrics, and go in the same direction as the inner planets and 
Earth around the sun. This is shown by the accompanying diagram as follows. Start off 
with Mars, sun, Earth all in a straight line (for simplicity). 
 For PTOLEMY, the sun goes to S, and Mars goes to M, so that the planet appears 
out at P. 
 For COPERNICUS, the earth goes to E (just make line “Sun-E” equal and parallel 
to line “Earth-S”), and so if we draw Em parallel to Ptolemy’s “Earth-M”, Mars will 
again appear at P in the fixed stars. 
 So for Ptolemy, Mars moved from “Mars” to M, i.e. from B to M on its giant 
epicycle. But for Copernicus, to get the same appearances, it moved from “Mars” to m, 
which is the opposite direction of the star on the moving eccentric, but the same direction 
in which Earth goes around the sun. 
 And we have 2 congruent triangles: rm-E-Sun and rM-Earth-S. 
 And it is evident that ∠ (Mars-Sun-m) = ∠ (Mars-Earth-S) – ∠MSB. 
 Hence ∠ (Mars-Sun-m) = (L + A) – A = L 
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14. THEREFORE the diagram we presented earlier correctly depicts the Copernican 
hypothesis. All the planets, including Earth, move around the sun in the same direction. 
That simplicity and uniformity and coherence, too, should move us to embrace 
Copernicus. 
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COPERNICUS 
 

DAY 31 
 
 

THE NEED TO REINTERPRET PERIODS; 
HOW TO EXPLAIN ANOMALIES. 

 
 
1. The first law is still safe, Copernicus now goes on to say. He means by this that, 
although the heliocentric model forces him to say certain new things, such as “the solar 
system and planetary spheres have no significant size compared to the outermost sphere 
of fixed stars,” he can still retain the “First Law,” namely that the order of the planets 
should be determined by how long it takes them to go round once. 
 The sphere of the fixed stars is furthest out, and, like the sun, it is immobile. So 
any motion it appears to have is really due to some motion in us. 
 Saturn is next (30 years) 
 Jupiter is next (12 years) 
 Mars is next (2 years) 
 Earth is next (1 year) 
 Venus is next (7 ½ months) 
 Mercury is closest to the sun (88 days) 
 
How did Copernicus get these numbers, though? Compare them to Ptolemy’s periods, 
determined from the least periodic joint returns. “L” is the movement of the planet’s 
epicycle in longitude, “A” is the movement of the star on the epicycle (for the epicyclic 
hypothesis), “S” is the number of circuits of the sun accomplished in the same time. For 
an inner planet, S = L, for an outer, S = L + A. 
 
 Saturn:  59(S) = 2(L) + 57(A) 
 Jupiter:  71(S) = 6(L) + 65(A) 
 Mars:  79(S) = 42(L) + 37(A) 
 Sun:  1 year to go around once 
 Venus: 8(S) =  8(L), accomplished at same time as 5(A) 
 Mercury: 46(S) = 46(L), accomplished at same time as 145(A) 
 
Start with the sun. Since its motion is replaced by ours, ours takes the same time as the 
sun did for Ptolemy, i.e. one year to go around the sun once. Easy. 
 Next, take Venus. Since we are going around the sun in the same direction that it 
is, and Venus seems to orbit the sun only 5 times in 8 years (on its “epicycle”), during 
which we ourselves actually orbit the sun 8 times, that means in those 8 years we have 
“undone” 8 of Venus’s orbits! Therefore it really orbits the sun 5 + 8 times during those 8 
years, so it has a period of going around 13 times in 8 years, i.e. one time in 8/13 of a 
year, i.e. one time in 7 ½ months, as Copernicus has it. 
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 Likewise, Mercury seems to orbit the sun 145 times in 46 years, during which 
time we orbit the sun 46 times, so it really went around 145 + 46 times in 46 years, i.e. 
191 times in 46 years, or 1 time in 46/191 years, i.e. in 88 days, as Copernicus has it. 
 Now, the story is a little different for the outer planets as opposed to the inner. 
Why? Because Earth is moving slower than the inner planets, and is outside their orbits, 
whereas it is moving faster than the outer planets, and is inside their orbits. Since we are 
outside the orbits of the inner planets, we see limits to their elongations, and hence their 
average speed L around us must appear to be S, that of the mean sun, while their cycles in 
anomaly A, i.e. around their epicycles, get undone by that same number, S, so to get the 
true number of times they have gone round in a given time, we have to add A + S. 
 But with the outer planets, since we are inside their orbits, we do not see any limit 
to their elongations, and so there is no need for their average speed around us to be S (so 
L will not equal S). Also, since we are moving faster than they are around the sun, we 
therefore overtake them some number of times during which they go around only once. 
We “lap” them. And these overtakings will correspond to (and cause) the anomalies, i.e. 
stations & retrogradations. So “A” will now correspond to the number of times Earth 
overtakes the outer planet, and L will simply remain the same, i.e. will still represent the 
number of times the planet goes around, i.e. goes around the sun. So to get the length of 
time for one cycle in longitude, we just divide the joint-return value of S by the joint-
return value of L, e.g. for Saturn divide 59(S) by 2 and you get about 30 years for one 
cycle of L, as Copernicus has it. 
 For Jupiter, divide 71(S) by 6 and you get about 12 years for one cycle of L, as 
Copernicus has it. 
 For Mars, divide 79(S) by 42 and you get about 2 years for once cycle of L, as 
Copernicus has it. 
 Hence the first law remains safe, i.e. the order of the spheres going out from the 
sun corresponds to the order of their speeds. The further from the sun, the slower they go. 
 
 
2. AN ARGUMENT FROM SUITABILITY. Copernicus says that the sun belongs at the 
center of the universe, since it is the lamp of the world. It is the lantern; the pilot of the 
world. Later, Kepler will complain that Copernicus did not take this far enough, since he 
still makes the Mean sun the center of the movements of things (that absurd fiction at the 
center, a fiction which gives no light at all!). Kepler will insist on giving the place of 
honor to a real body, the physical sun. 
 
 
 
3. THE COMMENSURABILITY OF THE WORLD. 
 This we have seen before, with Tycho Brahe. If we adopt Tycho or Copernicus 
over Ptolemy, and make things go round the sun, then we have a commensurable 
universe, that is, we can determine the ratios of all distances in the solar system, since the 
unit Earth-sun is a common distance to all, entering into all the triangles. 
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4. WHY S = L + A. 
 We already saw why S = L, given Copernicus. The inner planets have orbits 
contained by ours, therefore have limited elongations from the sun, therefore have the 
same average apparent speed around us that the sun has. 
 But why does S = L + A for an outer planet? 
 Because for Copernicus, the cause of “A,” i.e. the number of times an outer planet 
retrogrades, is that the Earth catches up with the outer planet and passes it by (we will see 
this better below). But of course it must be the case that “The number of times we go 
around in X time” is equal to “The number of times the planet goes around in X time” 
PLUS “The number of times we passed the planet” (i.e. S = L + A). Think of two race 
cars on concentric tracks, with the guy on the inside track going faster than the guy on the 
outside track. Let me be “inside guy” and you can be “outside guy.” Then suppose I go 
around 10 times during the same time that you go around only 4 times. Plainly, then, I 
lapped you 6 times. So “# of times faster guy goes around” is equal to “# of times slower 
guy goes around” PLUS “# of times faster guy passed the slower guy.” 
 Since S is really E for Copernicus, i.e. the speed of the earth around the sun, the 
law is really E = L + A. 
 
 
 
5. WHY ANOMALY IS OF GREATER MAGNITUDE IN A 
NEARER OUTER PLANET THAN IN A FURTHER ONE. 
 Copernicus first states the fact that the anomaly (i.e. the 
apparent retrograde motion of an outer planet) is greater for a 
nearer planet than for a further one, and says his system offers 
a reason for it. 
 Why does the retrograde motion of Mars appear greater 
than that of Jupiter? 
 When Earth is at E1 , Mars and Jupiter are roughly in 
line with some fixed star. Since Earth is on a smaller orbit, it 
moves faster than Mars and Jupiter—so let’s consider them as 
relatively still while Earth goes from E1 to E2. At E2, Mars will 
appear to have regressed to A, but Jupiter, only to B. 
 
 
 Or, since retrograde motion is terminated by the stations, and the stations occur 
when the line joining Earth to the outer planet is tangent to Earth’s orbit (we are 

imagining that Earth is moving 
while the outer planets sit still, 
a bit of a fudge; also, this is not 
the Ptolemaic epicycle, things 
are simpler, so station does 
occur at tangency), we can 
show that the regression of 
Mars is greater than that of 
Jupiter. For, when the earth 
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goes from E1 to E4 (the tangents from its orbit drawn out to Jupiter), Jupiter appears to 
retrograde only from C to D. But when the earth goes from E2 to E3 (the tangents from its 
orbit drawn out to Mars), Mars appears to retrograde from A to B. 
 
 
6. WHY ANOMALY IS OF GREATER MAGNITUDE IN VENUS THAN IN 
MERCURY. 
 Since Earth has a larger orbit than Venus & Mercury and contains both, and they 
move faster than Earth, imagine Earth as relatively still while the two planets buzz 
around. Retrograde motion is between stations, and stations occur when the line joining 
Earth to the inner planet is tangent to the planet’s orbit, i.e. at M1 and M2 and V1 and V2. 
Now since progression is in the direction that the sun appears to move (the motion of the 
other is counterclockwise to each, like two clocks connected by a single hand, and you 
rotate one counterclockwise around the other), therefore progression of the planets is M2 
– A – M1 and V2 – B – V1 . Therefore retrograde is represented by the perigeal arcs M1 – 
M2 and V1 – V2, and so it is greater for Venus. 
 
  
7. WHY ANOMALY OCCURS MORE FREQUENTLY IN A FURTHER OUTER 
PLANET THAN IN A NEARER ONE (e.g. in Saturn more than in Jupiter), and also why 
it happens more often in Mercury than in Venus. 
 That is, retrogradation occurs more often in the more outer of the outer planets, 
and more often in the more inner of the 
inner planets. 
 Why? Because retrogradation 
happens in the outer planets whenever Earth 
overtakes a planet, and it overtakes slower 
planets more often. But the slower the 
planet, the more outer it is. Hence 
retrogradation happens more often in the 
more outer of the outer planets. 
 But retrogradation happens in the 
inner planets whenever Earth is overtaken 
by a planet, and it is overtaken more often by the faster planet, Mercury. Hence 
retrogradation happens more often in Mercury than in Venus. 
 
 
8. SUMMARY OF COPERNICUS’S EVIDENCE FOR HIS SYSTEM: 
 � Fewer circles, a simpler model all around. 
 � Can explain why S = L (and why Venus must have phases). 
 � Can explain why S = L + A. 

� Can explain why an outer planet is at apogee when in solar conjunction, why it 
is at perigee when in solar opposition. 

 � Can explain why anomaly occurs in outer planets, i.e. stations etc. 
� Can explain why anomaly is greater in Jupiter than in Saturn, and smaller than 

in Mars. 
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� Can explain why there is more frequent anomaly in Saturn & Jupiter than in 
Mars. 

 � Preserves the “first law”. 
 � Makes possible a common measure of all distances. 
 � Makes the earthly thing move, not the divine thing. 
 � Makes the placed move, not the place. 
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COPERNICUS 
 

DAY 32 
 
 

THE MOVEMENTS OF THE EARTH; 
HOW TO EXPLAIN STATIONS AND RETROGRADATIONS. 

 
 
 
Today we will cover material drawn from De Revolutionibus 1.11 and 5.2-4. 
 
 

Book 1 
Chapter 11 

 
 
1. THE FIRST MOVEMENT OF THE EARTH. 
 Copernicus now begins assigning definite motions to Earth. The first of these, of 
course, is its axial rotation, from west to east, one time round in about 24 hours. 
 To get the direction clear, just consider the diagram: It is a matter of fact that 
when the sun is up in New Hampshire, it is not yet up in the places further west, e.g. 
California. So the rotation of the 
Earth brings the eastern parts of 
it to face the sun before the 
western parts. So the rotation is 
of the western parts toward the 
eastern parts, or 
counterclockwise looking down 
at Earth from above the north 
pole. 
 
 
2. THE SECOND MOVEMENT OF THE EARTH. 
 The second movement of Earth is its annual orbit around the sun in a plane to 
which Earth’s axis (and equator) is inclined roughly 23½°. 
 This motion is again from west to east, or counterclockwise looking down at 
Earth’s orbit from the north. Why? Well, the appearances for Ptolemy dictated that the 
sun move counterclockwise around Earth, as seen looking down from the north (i.e. that 
the sun move eastward through the fixed stars). And if A makes a circle around B 
counterclockwise, then (from the same point of view, above) B also makes a circle 
around A counterclockwise (just imagine two clocks in the same plane, connected by a 
single hand, and rotate one about the other; if the hand goes clockwise around one, so too 
around the other). 
 So what is the “ecliptic” now? It is the projection of the plane of Earth’s orbit 
out to the sphere of fixed stars. 
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 But how do we explain the equinoxes and the seasons? We must assume that 
Earth’s axis remains parallel to itself (almost) as it orbits the sun, since, if it did not, we 
would have different pole stars throughout the year. But this will also explain the seasons. 
At one time of year (summer), Earth’s North Pole is pointed as directly toward the sun as 
it can be, and so the north hemisphere gets as hammered by the sun as it can. At the 
opposite time of year (winter), 180° away on Earth’s orbit, it is the South Pole that is 
pointed maximally toward the sun, and North is pointed as far away as it can be, and its 
days are shortest. At the EQUINOXES, the tilt of Earth’s axis is neither toward nor away 
from the sun (it’s neutral), so every place on Earth gets 12 hours of daylight, 12 hours of 
darkness (except at the N and S Poles, and near them). 
 So Earth’s axis must be tilted, or there will be no change of seasons. 
 But it must stay parallel to itself, or there will be different pole stars all year. 
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3. THE THIRD MOVEMENT OF THE EARTH. 
 This movement which Copernicus assigns to Earth is a compensatory movement 
to keep Earth’s axis always parallel to itself. According to Copernicus, if Earth were “left 
to itself,” its axis would point toward the center of Earth’s orbit, like a toothpick stuck in 
a piece of gum stuck to the rim of a record. So, to stay always parallel to itself, since the 
axis at C is 180° of rotation off from the parallel to the axis at A, the axis must rotate at 
the same angular velocity as Earth around the sun, but in the opposite direction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FOURTH MOVEMENT OF EARTH? 
 In the Copernican model there must also be a way to account for the precession of 
the equinoxes, which, in the Ptolemaic model, was a slow spin of the celestial sphere 
about the poles of the ecliptic. The precession of the equinoxes is really due to the fact 
that Earth’s axis wobbles and does not remain perfectly parallel to itself—or, to put it 
Copernicus’s way, the compensatory motion of the axis is slightly faster than Earth’s 
orbital motion––i.e., at C, our North Pole points to N1 vs. N. 
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De Revolutionibus, 5.2-3 
 
 
5. We will now touch on how to deal with the anomalies, that is, the apparent speeding 
up, slowing down, stations, and retrograde motions. Remember, Copernicus is still 
unwilling to accept that the heavenly bodies really do in fact speed up and slow down 
(and he is quite right to suppose that the apparent irregularities, such as stations and 
retrogradations, are due to our own movement, and not to these appearances simply being 
real movements in the planets). 
 
 

Chapter 2 
 
6. Copernicus here complains about the equant and hints that he will eliminate it. “But it 
is clear that the regularity of the epicycle should occur in relation to E, the centre of its 
deferent . . . Accordingly they [the ancients] concede that in this case the regularity of the 
circular movement can occur with respect to a foreign and not the proper center. . . . But I 
think I have already made a sufficient refutation of that in the case of the moon.” Here he 
refers to his lunar theory, which we have skipped over. 
 
 

Chapter 3 
 
7. Copernicus will now explain the apparent irregularities of the planets by the effects 
which the Earth’s motion has on the appearances. 
 He explains that he will keep things simple, for now. He will assume that the orbit 
of the planet is concentric with Earth’s orbit (which he puts around the mean sun—since 
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Earth is on a perfect circle, going perfectly uniformly around it, the center of that circle is 
now the mean sun; and the physical sun is not exactly there. Shouldn’t he be annoyed by 
this?––A door for Kepler). Also, the orbits of the planets are not all in one plane, 
although they are close enough that for now we will let them be in one plane. 
 Specifically, we will be explaining various claims which Copernicus makes 
concerning when stations and retrogradations occur for inner and outer planets, and why 
they occur. 
 
 
8. STATIONS & RETROGRADATIONS FOR INNER PLANETS. 
 Here we are going to explain station and retrogradation in the case of an inner 
planet. That is, we will see how the Copernican system makes it possible to explain why, 
for an inner planet, retrogradation must occur at inferior solar conjunction. 
 [A] “C and line ACB will appear to the eye borne along at A to move in 
accordance with the mean movement of the sun.” 
 We are letting ALBM be Earth’s orbit, 
C its center, so C is our “mean sun.” 
 We are letting EFDG be the orbit of an 
inner planet, concentric with C. 
 A is Earth, and we draw AG, AF 
tangent to the inner planet’s orbit. 
 [B] “The planet in circle DFG as in an 
epicycle will traverse arc FDG eastward in 
greater time than it will the remaining arc 
GEF westward.” 
 Why is this true? Because arc FDG is a 
good deal greater than arc GEF, since GEF is 
the arc caught between the tangents from A, 
which must always be less than a semicircle in 
any such figure. Even if A (Earth) is in 
motion, this motion is “undoing” the motion 
through arc FDG as much as it is “undoing” 
the motion through arc GEF, so we need only consider the difference of magnitude in the 
arcs—the greater arc will take the greater time. 
 [C] “In the upper arc” FDG “it will add the total angle FAG to the mean 
movement of the sun,” i.e. in that arc the motion of the planet will be in addition to the 
speed it seems to have just because of Earth’s speed around C. If Venus stood still at D, it 
would still seem to progress just because of Earth’s motion. As it is, Venus is also 
moving, so its motion adds to the progression there (so we get greatest passage at 
apogee). 
 But in the lower arc, GEF, which is where regression occurs (because it is on the 
near arc between the tangents), its motion is subtracted from the apparent progression due 
to Earth’s motion—and since it there exceeds that apparent progressive motion, it appears 
to retrograde. 
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9. Let E1 and E2 be two successive locations of Earth while Venus is in its perigeal arc 
(between the tangents to its orbit drawn from Earth), 
and let V1 and V2 be the two corresponding locations of 
Venus. Then the projected appearances of Venus on the 
backdrop of fixed stars will make it appear to 
retrograde. 
 
 
10. [D] “Where the additive movement is equal to 
the subtractive, the planet will seem to come to a stop.” 
 And this, Copernicus says, will happen at the 
tangents G and F, where the planet is (for an instant in 
time) coming straight at us, or going straight away from 
us. 
 QUESTION: Why does this not conflict with 
the Ptolemaic (or Apollonian) rule for finding the 
station points by secants? Actually, it does! As long as 
Earth is moving with the speed of the mean sun around 
C, that motion will affect the appearances of the inner 
planet; at tangency, when the inner planet’s own motion 
contributes nothing to its apparent motion, it will not be at 
station so long as our own movement makes the planet appear to move. So station cannot 
occur at tangency, but must occur at the secant (as explained by Ptolemy), where the two 
motions cancel in the appearances. Without saying so, Copernicus is oversimplifying and 
abstracting from the motion of Earth, i.e., treating it as though it sat still compared to the 
inner planet, which moves faster. That is equivalent to Ptolemy letting the epicycle sit 
still on the deferent—in which case the planet would appear to be at station when it is 
along the tangent (to the epicycle) which passes through our eye. Similarly Copernicus 
will be abstracting from the motion of the outer planets when considering their stations, 
as though Earth (which moves faster than them) alone were moving, while they sat still.  
 
 
11. Copernicus notes the zodiacal anomaly, 
namely the fact that the sums of greatest elongations 
from the mean sun are not everywhere the same 
(e.g. for Venus), when seen in different parts of the 
zodiac. He suggests that this can be explained by 
eccentric circles: “But the greatest angular 
elongations from the mean movement of the sun, 
which these planets have in the morning and 
evening and which are understood by the angles 
FAE and GAE, are not everywhere equal, neither 
the one to the other, nor are the sums of the two 
equal; for the apparent reason that the route of these 
planets is not along circles homocentric with the 
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terrestrial circle but along certain others, by which they effect the second irregularity.” 
 
 
12. Station and Retrogradation for an 
OUTER PLANET is next. 
 [E] The same sort of explanation 
accounts for the retrogradations of an outer 
planet, such as Jupiter. Let E1 and E2 be two 
locations of Earth on its orbit when Jupiter is 
nearing solar opposition (mean sun is at S, 
center of Earth’s orbit). Let J1 and J2 be the 
corresponding locations of Jupiter at the same 
times. Since Earth moves faster, its arc will be 
greater, and let the drawing reflect this. Join the 
lines from Earth’s locations to the 
corresponding locations of Jupiter, and you will 
see that the projected locations of Jupiter in the 
sky will make it appear to retrograde, or go 
westward, the opposite of the direction of the 
mean sun (eastward). 
 
So now we can explain why, for an outer planet, 
retrogradation takes place near solar 
opposition. 
 
 
 
 
 
 
 
 
 
13. COPERNICUS’S DIAGRAM. 
 Copernicus notes that “From point A only will the 
true position of the planet ... be apparent”. That is, only when 
Earth, planet, and center of orbits all make one straight line, 
will the planet’s apparent position in the zodiac be its true 
heliocentric longitude. Something like this was true for 
Ptolemy, too; although he put Earth at rest and at the center 
of the universe, he did not make any planet, or even the sun, 
move around Earth as the center of uniform motion, nor even 
the geometric center of motion (e.g. for an eccentric 
deferent). 
14. [F] As we said in [C] above for an inner planet, here 
we say that on arc GBF Earth’s movement is in addition to the planet’s motion, and in 
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that time it adds ∠GDF to the motion of the planet itself. To see this, think of yourself 
first at G, then moving to B, then to F while the outer planet, sluggish compared to Earth, 
basically stays at D. So the total shift in the planet as seen through that time corresponds 
to its being seen from G and then from F. How will that affect the apparent position in the 
stars? Just project those lines GD and FD through D onto the stars, and you will make an 
angle equal to ∠GDF, vertically opposite to it. So that is the total apparent shift in the 
planet due to the movement of Earth from G, through B, all the way over to F. 
Meanwhile, the planet itself has also moved (a little bit), and in the same direction 
(cooperatively), and hence its motion is added to its apparent motion due to Earth’s 
movement. 
 
15. [G] The outer planet retrogrades when Earth moves along arc FAG, since Earth’s 
motion is faster than that of the planet. 
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COPERNICUS 
 

DAY 33 
 
 

REJECTING THE EQUANT 
 
Today we will be covering material drawn from De Revolutionibus, 5.4. 
 
 

Chapter 4 
 
1. SOME VOCABULARY. Apsis means “point,” like that in a pointed arch. So apsides 
is the plural form, and the line of apsides is the line through the “highest” and “lowest” 
apsides or points, namely the aphelion and perihelion. Also, from now on we will talk 
more about “aphelion” and “perihelion” than about “apogee” and “perigee” (except in 
lunar theory)! 
 
 
2. REJECTING THE EQUANT. 
 So far, Copernicus has explained only the heliacal anomaly of the planets––that 
is, why they have stations, retrograde, have greatest elongations from the mean sun, and 
the like. Now he wants to account for the zodiacal anomaly, that is, for the fact that the 
magnitude of these anomalies in each planet seems to depend on where they occur in the 
zodiac. And he wants to do this without having recourse to the “equant” circle, or equant 
center—the center about which the planet has uniform angular velocity, but which is not 
the center of its deferent. But first let us see what he is giving up, what he could have 
had if only he were willing to put up with an equant: 
 

 
Imagine a circle FL, center M, mean sun at D, point W 
such that WM = MD. If we let the planet move on that 
circle, but such that it sweeps out equal angles in equal 
times around point W, we get perfect equivalence to 
Ptolemy. No epicycles at all––the path of the planet itself 
is simply a circle! (After all, for an inner planet, stations 
and regressions need no longer be explained by an 
epicycle, but simply by a circle which is equal to the 
former deferent, namely Earth’s orbit.) 
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3. EQUIVALENCE. 
Let us see now how this simple hypothesis is, as 
asserted, equivalent to Ptolemy’s (for an outer planet): 
 
 
In the adjacent figure, the epicycle is equal to a circle of 
diameter EDV, which can be either the orbit of the 
mean sun around Earth (for quasi-Copernican), or vice 
versa (for Ptolemaic). 
 
We also draw in ES parallel to DT. 
 
 
 
 
 
 

PTOLEMY: 
 Earth = D, sun goes (from Z to V) = L + A 
 Epicycle’s center goes L about W, i.e. from F to P 
 Planet goes A about P (or F), i.e. from H to G 
 Therefore apparent motion is ∠HDG. 
 Produce VD to E, PG to X. 
I say ∠HDG = ∠SEP 
 
For DE is parallel to PG [since ∠MDE = L + A, & ∠PXT = L + A (1.32 in rPXW)] 
and DE = PG  [we made the epicycle = sun’s orbit; Ptolemy permits any scale] 
so DG is parallel to EP 
But HD is parallel to SE [construction] 
so ∠HDG = ∠SEP 
 Therefore the apparent motion is equal to ∠SEP 
 
QUASI-COPERNICUS: 
 Letting W remain the equant, but making the inner circle (still equal to the epicycle) now 
the orbit of Earth around the Mean sun at D, Earth goes (from K to E) = L + A. Since we give 
this circular motion to Earth, we need not give it to the planet, so we leave out the epicycle in 
this hypothesis, and let the planet go L about W simply from F to P (so its path is just the 
deferent!): 
 Therefore it is seen along KX first, along EP later 
 But if ES is parallel to KT, the star S and star T are the same, 
 since Earth’s orbit is a point to the heavens. 
 Therefore the apparent motion is ∠SEP 
 
And that gives us the equivalence. 

 
NOTE: An outer planet’s epicycle gets replaced by Earth’s orbit. 

W

V

L

P

TS

X

F

G

"A"
"L"

E
Z

D

L 
+ 

AL 
+ 

A

K
M

H



 

 44 

We see that an inner planet’s deferent gets replaced by Earth’s orbit. 
 An inner planet’s epicycle is really its own orbit around the sun, and the deferent 
is the sun’s orbit around us, or really our orbit around it. 
 An outer planet’s epicycle is really just an explanation for its apparent anomaly or 
retrogradation, etc., which is really caused by our lapping it, so that its epicycle is really 
just our orbit around the sun. 
 
 
4. WHAT COPERNICUS PREFERS. But instead, because Copernicus hates the equant 
so much, he opts for a simple epicycle to explain the zodiacal anomaly, and gives up the 
chance to have the planet’s actual path be a circle! Here is his hypothesis: 
 
AB is the deferent, center C. 
It is a same-direction epicycle, starting at A. 
Speed on the epicycle = speed on the deferent. 
 Uniform speed of epicycle is around C. 
 Uniform speed of star is around the center of the epicycle. 
Mean sun is at D. 
Cut off CM = 1/3 CD [so MD = 2CM] 
Make the radius of the epicycle =AF = CM. 
 
How do we know that the resulting path is NOT a 
circle? Because by the following considerations 
we see that the planet’s path bulges out at the 
sides. 
 
The planet starts at F (aphelion), goes to I after 
one quadrant, and ends at L (perihelion). 
 
Therefore the path (not depicted here!) goes 
through F, I, L. 
And FL is a line of symmetry (the planet does the 
same thing on both sides of it), and therefore if the 
path were a circle, then FL would be a diameter. 
 
 
Now FM = FC + CM = FC + AF = AC = CG 
and ML = MB + BL = MB + CM = CB = CG 
so FM = ML 
 
So: if the path is a circle, then M is the center! 
So if the planet’s path is a circle, it is the dotted circle on diameter FL, which equals 
deferent AB, just shifted down. 
 
But QI > QG  [hypotenuse QI] 
and QM > QC  [hypotenuse QM] 
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so IM > CG  [sums] 
so IM > MF  [FM = CG, just shown above] 
so IM in fact reaches outside the dotted circle on diameter FL. 
 
Therefore Copernicus’s path for the planet is not a circle, but bulges out at the sides. 
 
Q.E.D. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. NOT EQUIVALENT. This hypothesis of Copernicus is not equivalent to Ptolemy’s, 
but when he uses the right proportions for each planet, it differs from Ptolemy’s so little 
in terms of the predicted appearances, that naked-eye astronomy cannot (or cannot easily) 
distinguish which one is more true to the appearances. The kinds of observations and 
instruments made in the time of Copernicus would not have enabled anyone to decide. 
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But Tycho came along and made it possible to tell (still with the naked eye, but aided by 
better instruments and techniques). Copernicus has the planet bulging out at the sides, but 
really it should be “sucked in” at the sides. Ptolemy, too, whose hypothesis is equivalent 
to the dotted circle, has the planet out too far at the sides. But this circle is simple, and 
very close to being correct, so Kepler keeps coming back to it as a touch-stone for the 
orbit of Mars. But, as we shall see, Kepler will also replace D, the Mean sun, with the 
physical body of the sun. 
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KEPLER 
 

DAY 34 
 
 
 
 

NOTE ON THE LIFE AND WORK OF KEPLER (1571-1630) 
 
 
Johannes Kepler was born on December 27, 1571 in Weil in the Duchy of Wurttemberg. His 
family was noble but had fallen on hard times. His father ran a tavern, and young Kepler 
worked in the tavern and even labored in the fields. In 1584 he became a charity student at 
the Protestant seminary in Adelberg, and in 1586 he attended the college at Maulbronn. 
There he wrote a brilliant exam for the bachelor’s degree which enabled him to enter the 
University of Tübingen in 1588. As part of the normal course of studies for his master’s 
degree in philosophy he studied astronomy under Mästlin, who first introduced him to the 
theories of Copernicus. Kepler wrote a paper reconciling the Copernican model with Sacred 
Scripture—unlike his later mentor, Tycho Brahe, Kepler was a whole-hearted Copernican. 
Still, he wished to enter the ministry, and only reluctantly accepted the chair of astronomy at 
the Lutheran school of Graz when it was offered to him. 
 In 1596, Kepler published his first astronomical work, Precursor of Cosmographic 
Dissertations or the Cosmographic Mystery. Its main thesis was that the ratios of the orbital 
radii of the planets were determined by inscription and circumscription of their orbits 
variously around the five Platonic solids. It seemed to Kepler that God must have had these 
beautiful objects in view when deciding at what distances to separate them in their orbits. 
This interest in mathematical patterns among the orbital radii of the planets, and also among 
their periods, stayed with Kepler throughout his career, and the greatest fruits of that interest 
are Kepler’s Second and Third Law of planetary motion. This first published work of his 
won him fame and also correspondence with the two most famous astronomers of the time––
Tycho Brahe and Galileo. 
 When the Catholic archduke of Styria issued an edict banishing Protestant preachers 
and professors in 1598, Kepler fled to the Hungarian border. With the help of some Jesuits, 
he was reinstated in his original post, but nevertheless gladly accepted Tycho Brahe’s 
invitation to come join him as his assistant at the observatory near Prague. When Tycho died, 
Kepler was appointed imperial astronomer, and “inherited” Tycho’s precious data. Part of 
keeping on good terms with the emperor meant playing the astrologer. So Kepler wrote On 
the More Certain Foundations of Astrology (1602). Kepler was not the last of the 
astronomers to be mixed up in astrology—many years later Cassini, too, began his career as 
an astrologer, although he eventually renounced it altogether and condemned it. Kepler’s 
main distinction is that he was the first true astrophysicist. Ptolemy (and his followers) spent 
very little time thinking about what made the heavens move as they do, and even less time 
arguing in defense or this or that understanding of the motive causes in the heavens. 
Copernicus thought that motion in a circle was natural to a spherical body, and that was 
enough to satisfy him as a physical account of the motions of the heavens. So he was not 
much different from Ptolemy on that score. But Kepler was much influenced by Gilbert’s 
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book on magnets. He believed that the heavenly motions could be understood as the results 
of magnetic attractions or repulsions. He was mistaken about this, but this conception of his 
nonetheless set him apart from his predecessors. Rather than assume the heavens had a 
completely different nature from the familiar bodies on Earth, he endeavored to understand 
their motions in light of physical tendencies we find “down here.” About a century later, 
Newton would continue that same project, but show that the motions of the heavens were 
due not to magnetic attractions, but to another familiar force—heaviness, or gravity. 
 In 1609 Kepler published the book with which we will be primarily concerned: 
 
 

ASTRONOMIA NOVA 
ΑΙΤΙΟΛΟΓΗΤΟΣ 

Seu 
PHYSICA COELESTIS 

tradita commentariis 
D E  M O T I B U S  S T E L L A E 

M A R T I S 
 

Ex observationibus G. V. TYCHONIS BRAHE: 
 

Jussu & sumptibus 
 

RUDOLPHI II 
Romanorum Imperatoris &c: 

 
Plurium annorum pertinaci studio elaborata Pragae 

A  Sa. Ca. M.tis Sa. Mathematico 
JOANNE KEPLERO 

 
 
 
This grand title page can be translated as follows: 
 
 

New Aetiological Astronomy 
or 

Celestial Physics 
together with Commentaries on the Movements of the Planet Mars 

 
From the Observations of the Gentleman Tycho Brahe, 

By the Order and Generosities of Rudolph II, Emperor of the Romans, etc., Worked out at 
Prague in a Tenacious Study of Many Years, 

by His Holy Imperial Majesty’s Mathematician Johannes Kepler  
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The word “Aetiological” means “based on causes,” that is, on physical causes, and 
particularly on familiar ones, such as magnetic forces. That is part of what is new in Kepler’s 
Astronomia Nova. But there are other new things. There is a new stress upon the importance 
of minute precision in the observations which are to be the foundation of astronomical 
theory. There is also a new willingness to start from scratch—to abandon the preconceived 
notion that the heavenly motions are produced by circular movements. Magnets, for 
example, do not act “circularly.” And there is also a new interest in the shape of the orbit 
itself, the very path of a planet, and not only in the shape of the supposed mechanical causes 
producing its motion. In Ptolemy, who placed a star on an epicycle, the actual path of a 
planet might well have been a curlicue. In Copernicus, as we have seen, the actual path of a 
planet might be some horrible almost-circle that was a bit pudgy on the sides. He had no 
desire that the orbital path itself should be intelligible or simple. Moreover, there was no 
particular interest in discovering exactly what the path was. There was only the old desire to 
keep the path a product of perfectly circular motions. But since Brahe had proved that there 
are no crystalline orbs out there (thanks to the extremely eccentric paths of the comets which 
he had shown to pass through, unhindered, several of the supposed “spheres” of the planets), 
there was little reason to suppose the heavens worked on the basis of circular motions. At 
any rate, the supposed physical cause of this, namely hard crystalline spheres, had been 
proven not to exist. This paved the way for a new physics of the heavens, for a new 
astronomy based on new physics—in other words, for Kepler. 
 Kepler’s personal life was always difficult. His mother had been tried for witchcraft. 
The emperor was not very good about paying his salary. His first wife appears to have been 
clinically depressed. She died, and his three children by her also died (of smallpox). After 
1611, Kepler accepted an invitation to be mathematician for Upper Austria, while still 
retaining his position as court astronomer. He moved to Linz, and remarried in 1613, but he 
remained poor. Nonetheless, he was able to publish new astronomical tables, the Rudolphine 
Tables, compiled from his own and Tycho’s observations, in 1627. In 1628, he moved to 
Sagan in Silesia, and Duke Wallenstein of Friedland agreed to have the Emperor’s debts to 
Kepler transferred to him. But the Duke was only slightly better at paying Kepler than the 
Emperor had been. In a visit to Ratisbon in 1630, where Kepler hoped to present his financial 
case in court and get payment on the debts Duke Wallenstein owed him, he got a fever and 
died on November 15. 
 There is something else worth noting about Kepler—he was a very colorful, 
imaginative, and passionate writer. Here is a little sample, drawn from his note “To the 
Reader” at the outset of Book Four of his Epitome of Copernican Astronomy: 
 

It has been ten years since I published my Commentaries on the Movements 
of the Planet Mars. As only a few copies of the book were printed, and as it 
had (so to speak) hidden the teaching about celestial causes in thickets of 
calculations and the rest of the astronomical apparatus, and since the more 
delicate readers were frightened away by the price of the book too; it seemed 
to my friends that I should be doing right and fulfilling my responsibilities, if 
I should write an epitome, wherein a summary of both the physical and 
astronomical teaching concerning the heavens would be set forth in plain and 
simple speech and with the boredom of the demonstrations alleviated. 
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KEPLER 
 

DAY 35 
 
 

AN UPDATE ON TRIGONOMETRY 
 
 
In preparation for the study of Kepler, we will here review certain elementary principles of 
trigonometry which he will use. In our study of Ptolemy, we saw how he developed a table 
of chords and arcs by means of which to solve for the remaining sides and angles of triangles 
given certain sides or angles. These days, however, we do not generally do this by means of 
“chords” but by means of “sines” (and “cosines” and “tangents” and so on). So rather than a 
“table of chords” we would have a “table of sines” (or a calculator ready to present the 
entries on that table at the touch of a button!). Also, we do not chop the diameter of our 
reference circle into 120 parts, but instead we call its radius “1.” Again, there are certain 
basic trigonometric identities and relationships which are extremely useful for solving 
triangles, and which Ptolemy did not present to us. And Kepler will presume familiarity with 
all these things. Accordingly, we will now present the basics of modern trigonometry in 
order to make Kepler’s work more intelligible. 
 
 
 

1. THE DEFINITION OF “SINE” 
 
 
Like Ptolemy’s table of chords and arcs, a table of sines 
associates an angle with a unique line length. Also like 
Ptolemy’s table, a table of sines places angles at the center of a 
circle. To find the sine of an angle, x (let it be acute), we draw a 
circle with radius OR = 1 (as opposed to a radius of 60 in 
Ptolemy). Place the vertex of angle x at O, with radius OR as 
one of its legs, and from the end of the other leg, point A, we 
drop AB perpendicular to OR. The length of this perpendicular 
is called the “sine” of angle x, written 
 
 AB = sin x  
 
The name “sine” has an odd history. There was a Sanskrit word for “half-chord” (jya-ardha, 
sometimes shortened to jiva) which the Arabs translated into their own language (as jiba), and an 
abbreviation for this (it was written jb, without vowels) was mistaken by Latin translators for the 
Arabic word jaib for “fold” in clothing, or “bosom” or “bay.” So the Latin translators named the half-
chord a “sinus,” which is Latin for “bay” or “fold in a toga.” Not very helpful. AB is not a “bay” or a 
“fold.” It might be more useful to associate the word “sine” with “sinew”, since the sine is like half 
the string of a hunter’s bow. 
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2. HOW SINES AND ANGLES MATCH UP 
 
A given angle, x, obviously has only one sine, the length of AB. We cannot get any other 
length for the side of right triangle ABO which is opposite x , so long as x is given, and the 
length of AO is a standard unit. 
 But does a given sine go with just one angle, x ? 
 Not quite. If we keep opening angle x up to a point C so that AC is parallel to 
diameter DR, then this new angle, ∠COR, has a sine CE which is equal to AB, the sine of x. 
 ∠COR is the supplement of ∠x, since it is plainly equal to 
∠AOD. 
 So sin x = sin (supplement of x) = sin (180° – x). 
 And there will also be two sines below diameter DR which are 
equal to AB, if we continue to open the angle past 180°. But we need 
not concern ourselves with that now. 
 
 
 

3. SINES AND CHORDS 
 
How do sines relate to chords? Well, if we extend AB down to C, obviously 
 
 AC  =  2AB 
and ∠AOC = 2 x  
 
But AC is the chord of ∠AOC. 
So, given that a chord AC goes with an angle AOC, 
we also know that 
 
 ½ (AC) = sin ( ½ ∠AOC ) 
 
Does that enable us to use Ptolemy’s table of chords and arcs as a table of sines and angles? 
Almost—one more step is needed. We use the same “degree” system that Ptolemy did 
(although we express parts of degrees decimally, not sexagesimally), so we only need to cut 
his angle values in half. But we not only have to divide his chords in half—for since 
Ptolemy’s radius is called “60,” and the table of sines (by another convention) requires us to 
call the radius “1,” we must also divide the value of his chord by 60 to translate it into “sine 
language.” So we divide his chord-value by 120 in all, and divide his arc value by 2: 
 
 1/120 (Ptolemy’s chord) = sin (1/2 the corresponding arc) 
 
 
EXAMPLE: 
  On Ptolemy’s table, a chord of 60 parts goes with an arc of 60°. 
 
  So: 1/120 (60) = sin (1/2 [60°] ) 
 
  i.e. ½ = sin 30° 
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4. THE DEFINITION OF “COSINE” 
 
We said that perpendicular AB is the “sine” of ∠x. But the segment of the radius which it 
cuts off, namely OB, is also distinctive of ∠x. This segment is called the “cosine” of x, 
written 
 
 OB = cos x 
 
Now, does the supplement of x have the same cosine? You may 
recall from high school that if O is the origin of a coordinate axes 
system, we read lengths by beginning from it, and those going out 
to the right of it are (by convention) “positive,” while those to the 
left are “negative.” 
 
So if ∠COR = ∠AOD = the supplement of ∠ x 
then cos (∠COR) = OE 
And although OE = OB, if OB is “.64”, then OE is “– .64” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A

O B R
X

C

ED



 53 
 

5. OTHER TRIG FUNCTIONS 
 
 
Other lines may be drawn which also grow and shrink together with angle x at the center of 
our unit circle. If we draw a tangent from A, cutting the extended radius OR at T, then AT is 
the tangent corresponding to ∠x, written: 
 
 AT = tan x 
 
And OT is the secant (from “secare”, “to cut”), i.e. the particular line cutting the unit circle 
which corresponds to ∠x, written: 
 
 OT = sec x 
 
And BR, the segment of the radius leftover from the cosine, is called the “versed sine” of x 
(i.e. like another type of sine which is “versed,” that is, turned 90°). Really no one talks 
about the “versed sine” these days, since it is nothing other than 1 minus the cosine (OB). 
Newton calls the “versed sine” the “sagitta,” or “arrow,” since it looks like an arrow in a 
bow, although he uses “versed sine” only in reference to the unit circle, and “sagitta” even 
for other kinds of curves such as conic sections. 
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6. THE LAW OF SINES 
 
 
Kepler uses one rule about sines over and over in order to solve triangles. The rule is called 
the Law of Sines. The Law states: In any triangle having angles A, B, C, and their opposites 
sides a, b, c, the sines of any two angles are as their opposite sides. 
 
e.g. sin A : sin B = a : b 
 
 
 
 
 
 
 
 
 
 
 
To see why, drop CP perpendicular to AB. 
In our unit circle, center O, 
draw ∠EOK = ∠B  and drop EK perpendicular to diameter DR. 
draw ∠LOM = ∠A  and drop LM perpendicular to diameter DR. 
 
Now rMLO is similar to rPCA, so ML : LO = PC : CA 
or (since LO = EO)    ML : EO = PC : CA 
but rKEO is similar to rPCB, so KE : EO = PC : CB 
Therefore     ML : KE = CB : CA (1) 
i.e.      sin A : sin B = a : b 
 
Q.E.D. 
 
QUESTION: What if ∠B were 
obtuse, so that CP fell outside 
rABC? Does that affect the 
conclusion? 
 
 
 
 
 
 
 
 

                                       
1 See Euclid 5.23, or 6.16. 
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7. THE LAW OF COSINES 
 
 
Another trigonometric rule which can be useful in the study of Kepler is the law of cosines. 
There is also a law of tangents, but for now we will content ourselves with a quick proof of 
the law of cosines, thus: 
 
Given:  Triangle with angles A, B, C and the sides opposite these a, b, c 
Prove:  a 2 = b 2 + c 2 – 2 bc cos A 
 
 
Let’s assume we have an acute triangle ABC, so that when 
we drop BP perpendicular to AC, it falls inside the 
triangle. Also, when we write X2, let this mean the number 
we get when we multiply the numerical value of X by 
itself, rather than some area. 
 
 
 
Now BC 2 = CA 2 + AB 2 – 2 CA · AP  [a numerical version of Euc. 2.13] 
or a 2 = b 2 + c 2 – 2 b · AP 
 a 2 = b 2 + c 2 – 2 b [ (c/c) · AP ] 
 a 2 = b 2 + c 2 – 2 b c [ AP / c ]  
 
Now imagine rBAP inside our unit circle, with A at the center. Wherever that circle 
intersects AB (extended, if necessary), from there drop a perpendicular to AP (extended, if 
necessary), and we will have formed the sine and cosine triangle for angle A. And that 
triangle will obviously be similar to rBAP. So 
 
 AP : AB = cos A : 1 
 
i.e. AP : c = cos A : 1 
 
If we treat these simply as numbers, this means that AP ÷ c = cos A ÷ 1. 
In other words, AP ÷ c = cos A, or AP / c = cos A. 
 
Thus a 2 = b 2 + c 2 – 2 bc cos A 
 
Q.E.D. 
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8. NOTE ON THE LAW OF COSINES 
 
 
Notice that we would have a problem if a 2 meant “the square on side a,” since in that case 
the conclusion would make no sense. It is all very well to have a square equal to the sum of 
two other squares minus some area, but what does   2 bc cos A  mean? “Cos A” is itself a 
line length, just as b and c are. So if we take the three together, doesn’t that give us a 
volume? On the other hand, if we only mean the product of their numerical values, we 
cannot subtract a number from an area, so the previous things, like   a 2, must also be taken 
as numerical values. 
 And although finite numerical values for things like sines and cosines are rarely 
exact, there are two ways to deal with that: (1) As we did in Ptolemy, we can say “take them 
as exact as you need,” and the rule becomes only truer as you get more exact values, and we 
can get it to be true enough for the purposes of astronomy, or we can (2) Learn how to 
“multiply” not just numerical values, but the straight lines themselves, in all their 
exactness—which Descartes explains in his Geometry. 
 
 

9. THE LAW OF COSINES FOR OBTUSE TRIANGLES 
 
The proof for the Law of Cosines does not change much if we have an obtuse triangle, with 
∠CAB obtuse so that the perpendicular from B to AC falls outside the triangle. Drop BP 
perpendicular to CA extended. 
 
Now BC 2 = CA 2 + AB 2 + 2 CA · AP  [a numerical version of Euc. 2.12] 
or a 2 = b 2 + c 2 + 2 b · AP 
 a 2 = b 2 + c 2 + 2 b [ c/c · AP ] 
 a 2 = b 2 + c 2 + 2 b c [ AP / c ]  
 
As before, AP / c is numerically equal to cos A, but since angle A is obtuse, therefore its 
cosine is negative (see above, “4. THE DEFINITION OF COSINE.”). That means we cannot 
replace AP / c with cos A without also changing the sign of 
the last term in the equation above, thereby falsifying the 
equation. So, if we wish to make the replacement and 
maintain the equation, we must also multiply the last term 
by –1, so we have 
 
 a 2 = b 2 + c 2 – 2 b c cos A  
 
So the law is the same for acute triangles and obtuse ones. 
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KEPLER 
 

DAY 36 
 
 

KEPLER’S INTRODUCTION TO THE ASTRONOMIA NOVA  
 
 
Among all Kepler’s writings, perhaps his introduction to Astronomia Nova was the most 
widely read and influential in his own time. It is a rather substantial essay in both content and 
length (about 30 pages). Let’s take a tour through it now, in order to prepare our minds for 
the difficult matter of the book itself. 
 
 
THE DIFFICULTY OF BOOKS OF ASTRONOMY 
 
Kepler begins his introduction by noting the difficulty of reading and writing books of 
astronomy. The mathematics can be very obscure if offered in purely mathematical form and 
without explanations—but with the necessary explanations, it becomes verbose and tedious. 
In the book itself, he provides a good deal of explanation (although it is not always the 
clearest!), so in order to compensate for the undue length, he chose to provide a series of 
summaries of all the chapters at the outset of the book. Often, if we find ourselves lost in the 
details of some chapter, wondering what on Earth Kepler is saying, when we turn to the 
summary we see what he is up to. 
 There is also some difficulty with Kepler’s vocabulary. It is not entirely the same as 
the vocabulary we learned from Ptolemy, even when he is talking about the same things. 
And he does not always explain his terminology in the particular places where we are trying 
to understand what he says. For example, in this introduction, Kepler mentions the “first 
inequality” and the “second inequality.” What do these mean? Their meaning seems to be as 
follows: 
 “First Inequality” = “Zodiacal Anomaly” 
 “Second Inequality” = “Heliacal Anomaly” 
 The “second inequality” refers to the fact of retrogradation at solar opposition (for an 
outer planet) and at inferior conjunction (for an inner planet). 
 And the “first inequality” refers to the fact that the planets move with different speeds 
in different parts of the zodiac (and their retrogradations are of different magnitude, and, for 
inner planets, the sums of their elongations from the Sun differ). 
 
 
THE NEED FOR THIS INTRODUCTION 
 
Kepler then explains that even his summaries will seem prolix to many readers. He calls his 
work a “labyrinth”, and compares his summaries to a “Gordian knot.” Part of the reason for 
this is that he presents the Astronomia Nova more or less as a record of his own thought 
processes and discoveries. He did not go back and remove all the false starts and dead ends, 
but retained them, with the idea that these might show others not only what he discovered, 
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but how he discovered it. This has the obvious disadvantage of being long and confusing and 
often frustrating—we can find ourselves struggling for hours or days to understand what 
Kepler is saying in some chapter, only to find out he abandons it in the next! But there are 
advantages, too. We get some sense of what a brilliant mind does when it is in the process of 
making important discoveries. And aside from how illuminating that can be, it is also 
exciting to watch. There is drama in the Astronomia Nova which is altogether absent in the 
Almagest. At times, one feels one is beside Kepler himself, assisting him. One shares his 
keen desire to unravel the riddles of the motion of Mars. 
 So, for those who will find even his chapter summaries difficult to follow, he has 
assembled this introduction, in which he draws together some central ideas which are left a 
bit scattered in the main work. He also offers the reader the choice of trusting his 
mathematics, or following him through all the steps. And he warns us that at times he 
indulges in probable reasoning or conjecture—which is only natural in a work of discovery. 
 
 
HIS MAJOR PREDECESSORS 
 
Kepler next divides the major schools of astronomical thought: 
 One kind of school of thought treats each planet separately, and gives each its own 
causes for appearing to us thus and so. The main representative of this way of thinking is 
PTOLEMY. 
 The other type of school, which seeks a single common cause of all the various 
properties in the planetary motions, is divided into COPERNICUS, who makes this cause the 
motion of the Earth, and TYCHO BRAHE, who makes it the motion of the Sun. 
 He notes that these three schools are equivalent to within “a hair’s breadth.” They 
produce the same appearances. 
 
 
THE AIM OF THE BOOK 
 
After this brief description of the models of Ptolemy, Copernicus, and Tycho Brahe, Kepler 
presents the goals of his book. 
 The primary goal is to reform astronomy so that the calculated positions of planets at 
given times fit the observations better. He notes that in August of 1608 Mars was nearly 4° 
off the position it should have had according to calculations based on the Prutenic tables. 
(These tables were from an ephemeris produced by the astronomer Erasmus Reinhold which 
was published in 1551.) To give a sense of just how far off that is, the full moon’s diameter 
is about ½ ° wide. So Mars was appearing almost eight full moon’s breadths away from 
where it was supposed to be according to those tables. That is a gross error. 
 The secondary goal is to set astronomy on physical foundations, which he says is 
necessary, anyway, to get results to agree perfectly with the data. So he differs profoundly 
from Ptolemy and Copernicus by dropping his commitment to the old axiom of circular 
motion, and committing himself instead to exact correspondence with the observations, and 
making his system physically intelligible. So now “astronomy” is not so much a branch of 
mathematics as it is a branch of physics, or it is becoming so. 
 The two goals, then, are pursued together throughout the book, not in separate parts. 



 59 
 

FIRST STEP TO SETTING ASTRONOMY ON PHYSICAL FOUNDATIONS 
 
Kepler next begins summarizing the main steps by which he reaches his goal. These are four: 
 (1) Establishing that the planes of the planetary orbits intersect in the Sun. 
 (2) Establishing that there has to be an equant in the solar theory. 
 (3) Establishing that the eccentricity of Mars’s equant is exactly bisected. 
 (4) Establishing that Mars’s orbital path is not a circle, but an ellipse. 
 
The first of these means he will show that the planes of the planetary orbits all intersect in no 
other place than the very center of the solar body. This is a correction of Copernicus and 
Brahe, who both made the mean Sun (rather than the physical Sun, the solar body) the point 
of reference. This is part of Kepler’s program to banish mathematical fictions having no 
physical significance from his understanding of the heavenly motions. Mathematical points 
cannot attract or push or even serve as desirable objects for other things to pursue. They 
cannot supply a satisfying physical account of the motions of heavenly bodies. 
 He notes that Braheans could say to him “We place the point of intersection of the 
planetary orbits near the Sun, not in the Sun itself, and we do just fine, thank you very 
much.” So he needs to show that placing it in the Sun itself will give him the same 
appearances. Similarly for Ptolemy. This is the work of Chs.1-6. 
 In the next part of the book (Chs.7-21) he says he will take up the orbit of Mars, and 
shows that his method (of placing the intersection of the planes, etc., in the physical Sun) 
works not worse, but better, in agreeing with the appearances, than the methods of Ptolemy 
and Brahe. And while there is much agreement with appearances for all the methods, his 
alone can be made to agree with physical causes. He will also introduce certain observations 
which the old methods cannot match, but which his method matches most beautifully. And 
thereby he demonstrates that Mars’s line of apsides passes right through the solar body itself, 
not just nearby. He will also show that this works not only for longitudes, but also for 
latitudes. 
 He will show certain deficiencies in the theories of his major predecessors: 
 • He will show that Ptolemy’s planets cannot move about the geometric centers of 
their epicycles with uniform motion. Rather, they move uniformly around some other point. 
 • He will show that Copernicus’s orbit of the Earth does not have its geometric center 
coincident with the point around which the Earth moves uniformly. 
 • And he will show that Tycho Brahe’s circle on which the common point or “knot” 
(tying together the planets’ orbits) moves also does not have its geometric center coinciding 
with the center of uniformity of motion. 
 
 
 
SECOND STEP TO SETTING ASTRONOMY ON PHYSICAL FOUNDATIONS 
 
Next Kepler describes the next main step he took toward setting astronomy on physical 
foundations: establishing that there has to be an equant in the solar theory. This is something 
nobody before him thought, not even Tycho Brahe. Ptolemy, for instance, introduced an 
equant only into planetary theory, and not into the solar theory. But for Kepler, there is 
something fishy in this. Kepler is a Copernican, which already fits with his insistence upon 
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physical reasons for the heavenly motions. The Sun, after all, seems to be the mightiest and 
most influential body in the heavens. So all the planets should go around it—we should not 
make it go around any of them, not even us. That means we are going around it (in order to 
preserve the appearances), as Copernicus said. But then we are just another planet like any 
other! And if there are equants in all 5 planetary theories, then it makes no sense that there 
should be none in our own. Kepler went about seeking an equant in the motion of the Sun 
(that is, in our motion around it), and he found one. That is a strong blow to Ptolemy, and a 
point for Copernicus, that is, for heliocentrism. 
 In general, it is a goal of Kepler to argue in favor of the Copernican model, since that 
alone, he sees, can make physical sense of the heavenly motions. Here in the introduction, 
Kepler summarizes some of the arguments he musters in favor of the heliocentric model. 
First, Ptolemy is certainly condemned, he says, because Ptolemy would have as many 
theories of the Sun as there are planets. He does not make any planets go around the Sun, and 
as a result, each planetary motion, somehow tied to the motion of the Sun, has its own reason 
for being tied to the solar motion, and practically has its own Sun. But Brahe showed that a 
single solar theory suffices for all the planets, and we can make them all go around the same 
point. And in that semi-heliocentric model, we are practically with Copernicus, except that 
we make the Sun go around the Earth, carrying all the planets with it! 
 But Copernicus is more compatible with celestial physics than Brahe is. Kepler says 
this is true for many reasons: 
 (1) Brahe himself has shown that there are no solid orbs, no crystalline spheres on 
which the celestial bodies are carried. And yet he has the planets making circles around the 
moving Sun. Why are they doing that, if they are not embedded in nesting spheres concentric 
with the Sun? 
 (2) If the Sun is moving, how does each planet keep making a nice nearly-circular 
orbit around the Sun? If the planet is alive, it seems as though it has to attend to a lot of 
things to stay in that type of complex motion—running circles around someone else who is 
also running in a circle is not easy. But if we say the Sun is sitting still, then we have a 
simple path for the planet, one which can be explained by physical rather than animate 
powers—in particular, Kepler thinks it is due to magnetism. 
 (3) Kepler will show that if we allow that the Earth is moving, then it follows that it 
speeds up as it nears the Sun and slows down as it goes away from the Sun (on its eccentric 
orbit). That fits nicely with physical causes. But if we make the Sun move instead, we have 
to say it speeds up near Earth and slows down away from it—Kepler notes that this would 
follow still, even if we allow that the Sun moves, since this irregularity is the effect of the 
equant, which he has shown must be introduced into the solar theory, whether we like it or 
not. Why should that be? Is the Earth acting on the Sun? That seems backwards, since the 
Earth is so much smaller and less powerful than the Sun. This gives rise to the physical 
conjecture that the Sun itself is the source of the motion of the five planets. 
 (4) This idea in turn gives rise to the idea that the Sun itself is sitting still. It is the 
cause of motion in the planets, so it is most likely (Kepler says) that the Sun does not move. 
 (5) Otherwise we say that the Earth sits still, and then what will be the physical cause 
of the motion of the Sun and its enormous burden of the five planets circling it? Is the Earth 
doing that? Preposterous! 
 (6) The periods of the planets are yelling out to us that the Earth is in motion around 
the Sun. Mars has a period of 687 days, Venus has one of 225 days, while the Earth-Sun 
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circuit (whichever one is moving) has a period of 365 days, which is between those other 
two periods. Doesn’t that suggest that the Earth-Sun circuit lies between the orbits of Mars 
and Venus around the Sun? And hence that this circuit is a circuit of the earth around the 
Sun, not the reverse? 
 (7) The very brightness and size of the Sun suggest that it is the physical seat, 
somehow, of the motions of the planets, and hence is at rest at the center of the world. 
 
 Kepler also considers and overthrows some objections to the motion of the Earth. The 
first of these is that the Earth is heavy, and therefore rests at the center of the world, a 
mathematical point, and can’t move away from there. Kepler asks how a mathematical point, 
where there is no body other than the Earth to attract the Earth there, can have the power to 
do anything at all. It is a non-entity, a mere mathematical thing. He says that the heavy 
bodies are not attracted to the center of the universe because it is the center of the universe, 
but because it is the center of a “kindred body.” He has the notion that the Earth and Moon 
are “kindred bodies,” which is why the sea is attracted to the moon (hence the tides). If the 
Earth and moon were not held back from each other by some force, he says, they would 
descend towards each other. (If only he had taken this a step or two further, and seen that all 
bodies in the universe are “kindred bodies” in this way, he would have discovered universal 
gravitation before Newton!) 
 
 Another objection to the Earth’s motion he considers was also found in Ptolemy, 
namely that bodies thrown up into the air, or jumping up, should be left behind by the motion 
of the Earth. But Kepler says that the Earth has a grasp on these objects (even as it attracts 
the moon), and that grasp would not weaken considerably unless they were removed from 
the Earth a distance which was perceptible in relation to the Earth’s radius. But no familiar 
projectiles get that far from the Earth. 
 
 Still another objection, not found in Ptolemy, is drawn from the Scriptures. Kepler 
notes that most people who refuse to assent to Copernicus do so because they think the 
Scriptures say that the Sun goes around the Earth, not the reverse. One familiar passage they 
have in mind is Joshua 10:12 ff, where the Sun miraculously stands still. Kepler replies that 
 

Thoughtless persons pay attention only to the verbal contradiction, “the Sun 
stood still” versus “the Earth stood still,” not considering that this 
contradiction can only arise in an optical and astronomical context, and does 
not carry over into common usage. (William H. Donahue translation.) 

 
In common speech, “the Sun is rising” does not mean “I’m a geocentrist,” but only that the 
Sun is appearing to rise over the horizon. So too “the Sun stood still in the sky” does not 
mean “its stopped its movement around the immobile Earth” but only “it stopped its apparent 
course across our sky.” And the Scriptures are not addressed to astronomers, but speak of 
such phenomena in accord with common usage. Joshua just needed the day to last a little 
longer, which purpose would be served just as well by stopping the Earth’s spinning for a 
while as it would be by stopping the Sun’s orbit for a little while. And either event would be 
described by the words “the Sun stood still” by any ordinary observer, whether a geocentrist 
or a heliocentrist. Kepler considers other scriptural passages which use geocentric images, 
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and shows that none of them is opposed to Copernican theory. In general, Kepler does not 
find any physical or astronomical doctrine in the scriptures. 
 Following this theological defense of the Copernican model, Kepler gives two kinds 
of advice to his readers, one kind for astronomers, another kind for idiots. To astronomers, 
he recommends that they learn to see God’s goodness and providence not only in the 
seeming stability of the Earth, but also in its motion. To idiots, that is, to those who are too 
stupid to understand astronomy, or else too weak in their faith to agree with Copernicus and 
still believe in the Scriptures, he advises that they put down the book and mind their own 
business, namely the business of scratching away at their own patches of dirt in the world. 
They should not try to understand things above their understanding, but should praise God 
by looking upon his creation just with their eyes, since it has not been given to them to look 
upon it with the more penetrating insight of the mind. 
 
 
 
 
 
 
 
THIRD STEP TO SETTING ASTRONOMY ON PHYSICAL FOUNDATIONS: 
 Establishing that the eccentricity of Mars’s equant is exactly bisected. 
 
What does this mean, and why does it have to do with physical considerations of the 
heavenly motions? 
 
 
If we draw the actual path of Mars around the Sun, 
which is at S, and bisect the orbit’s line of apsides (i.e. 
the line through aphelion and perihelion) at C, then ask 
ourselves where we must place the point around which 
Mars sweeps out equal angles in equal times (or most 
nearly does), where will this be? It will be at Q, where 
QS is exactly double CS. Kepler notes that both Brahe 
and Copernicus had doubts about this. Copernicus 
wanted to get rid of all such equants. Brahe seemed to 
have doubts about where it should be located, and he 
did not think that the solar theory needed one. Kepler will show them to be wrong about 
these things. 
 And what is the physical significance of this? Why is Kepler so keen on equant 
points? He will show that every planet requires such a point, and that in every case “the 
eccentricity of the equant is exactly bisected,” that is, its distance from the Sun is bisected by 
the geometric center of the orbit (or the midpoint of the line of apsides). But if the 
astronomical data forces us to say this about every planet, we are also forced to say that the 
planet speeds up near the Sun and also slows down away from the Sun on its own orbit. This 
becomes plain by drawing a line through Q at right angles to the line of apsides. That line, 
together with the line of apsides itself, will divide the orbit into two small parts on top and 
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two longer arcs on the bottom, near the Sun. But since the angles thus formed about Q are 
equal, the planet will spend equal times in those unequal arcs, going through the longer ones 
near the Sun in the same time as it takes to go through the shorter ones up near Q. Hence the 
planet goes faster when it is near the Sun, slower when it is further away—which is a strong 
indication that the Sun is the cause, somehow, of the motion of the planet. 
 
 
 
 
 
 
 
FOURTH STEP TO SETTING ASTRONOMY ON PHYSICAL FOUNDATIONS: 
 Establishing that Mars’s orbital path is not a circle, but an ellipse. 
 
 
This is the main work of the Astronomia Nova with which we shall concern ourselves. 
Kepler spent enormous amounts of time and mental energy trying to determine exactly what 
shape the path of the planet Mars was. He tried all kinds of ideas that failed. Finally, he 
established that it is perfectly elliptical. When one sees just how slightly elliptical it is, and 
how near it is to being a perfect circle, one is moved with admiration for the precision and 
insight of Kepler. We will see this better later, with diagrams drawn to scale. 
 He also spent a good deal of time and energy trying to explain planetary motion in 
terms of magnetic influence from the Sun. His ideas on this score are both obscure and 
finally incorrect, so we will focus more on his determination of the elliptical shape of Mars’ 
orbit. 
 Why Mars? One of the reasons for this choice is that Kepler was sure that the actual 
shape of the planet’s path had to be physically significant. Since there were no more “solid 
orbs,” thanks to the work of Tycho Brahe, who proved they cannot possibly exist (the comets 
seem to move by laws very similar to those of the planets, and yet they pass through the 
supposed “orbs” of the planets!), we have no special reason to believe that circular motion is 
particularly important in the heavens. That particular form of the “Astronomer’s Axiom” is 
dead, so far as Kepler is concerned. Very well, then: if there are no spherical mechanisms up 
there, and so we have lost all physical reason for thinking the orbits are somehow circular or 
products of circles, what shapes are those orbits? And won’t that tell us something about the 
causes producing those orbits? 
 About that Kepler is absolutely correct. But while he succeeds in finding out the 
shapes of the orbits, and while he is right that these orbits indicate that the Sun is somehow 
responsible for them, we have to wait until Newton before we can discover exactly what sort 
of influence the Sun has on the planets so as to produce their orbits. 
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KEPLER 
 

DAY 37 
 

Summary 19 
Chapter 19 

 
 
 
 
As with Ptolemy and Copernicus, we will be looking through selections of Kepler’s book, 
and not the entirety of it. Today’s main matter will be drawn from Chapter 19 and from 
Kepler’s summary of that chapter. But first, a brief summary of some of the matter from 
Chapter 16. 
 In this chapter we are introduced to 
Kepler’s variation of a Ptolemaic hypothesis 
(which itself is quite simple and lovely), a 
version which he says he makes “in imitation of 
the ancients.” We came very near it at the end of 
our study of Copernicus, where we learned how 
simple a model Copernicus could have had, if 
he had been able to stomach an equant point. 
Recall that once we say the Earth orbits the Sun, 
we can (while remaining equivalent to Ptolemy) 
make the orbit of a planet simply be a circle 
(with no epicycles at all!). Imagine a circle with 
geometrical center B, the Sun at A, and an equant-point at C. This circle is the orbit of the 
planet. 
 GOODBYE EPICYCLES. Why does Kepler begin with this? Partly because of its 
simplicity, but also, in part, because he has a sense that epicycles simply won’t do if we are 
to take physics seriously. Later, when epicycles come up, he eventually rejects them on 
physical grounds, although he continues to use an epicycle to the very end as a kind of 
device representing the physical components involved in planetary motion. Since Brahe has 
shown there are no orbs, there can be no physical reason why a planet would dance around a 
mathematical point with no physical reality (it is not the center of a body anymore). 
 HELLO EQUANT. Why is he, unlike Copernicus, willing to tolerate an equant? 
Because it makes physical sense! If the Sun is the cause of the planet’s motion (which is 
what makes physical sense), and if the Sun is not at the center of the planetary orbit, then the 
planet must speed up when it gets closer to the Sun, the cause of its motion, and slow down 
when it gets further away. But then if there is a point around which it sweeps out equal 
angles in equal times, this cannot be at B, the geometric center of the orbit, but must be at a 
point higher up. If the planet moved uniformly around B, then it would not speed up or slow 
down in its orbit at all. To make it go faster near the sun, we must make it go through larger 
arcs down there and through smaller ones up at the top of the orbit (around aphelion) in 
equal times. That requires the equalizing point to be somewhere around C. 
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 So Kepler begins with this simple hypothesis, but in pursuing his purpose in the 
Astronomia Nova, he must ground it firmly in the observations. Ptolemy showed that he must 
place the equant point, C, beyond the center of the deferent (which is now just our orbit), but 
he assumed that AB = BC without firm proof (Kepler, in an earlier work, accused Ptolemy of 
random conjecture in this matter, but he here retracts this statement; we will see, in Ch.19, 
that there is a reason for “bisecting the eccentricity”). After doing this for one planet, he 
simply assumes it for the rest, and it works out pretty well. Kepler is not satisfied with that. 
He wants to derive this “bisection of the eccentricity” from the observations. On the basis of 
about four “acronychal observations” of Mars (i.e. observations of the planet rising while the 
sun is setting, with the Earth in line between them, i.e. a perfect solar opposition), Kepler 
begins plugging in guesses at the eccentricity, getting results that don’t match the 
observations, and going back and forth (about 70 times, he says) in this double-iterative 
process, until he finally gets a ratio of AB : BC which produces the right results. It turns out 
that the ratio is not that of equality, but rather: 
 Where the radius of the orbit = 100,000 
 Then AC = 18572 
 and AB = 11332 
 and BC = 7240 
This, then, is our starting hypothesis. It is a mere Circle with a Really Unequally Divided 
Eccentricity. We can refer to it as the C.R.U.D.E. model for short. 
 
 
 

SUMMARY 19. 
 
Kepler sums up the matter of Ch.19 thus: 
 
1. While the CRUDE model constructed in Ch.16 agrees well with the motion of Mars in 
longitude near opposition to the sun, Ch.19 shows that this model does not predict the 
locations of Mars very well in latitude near opposition to the sun. 
 
2. He also shows that Brahe’s hypothesis has similar problems, and so does Ptolemy’s. He 
does this first in the Copernican form. 
 
3. He does the same in the Brahean form. 
 
4. He shows that the error in latitude results from failure to bisect the eccentricity, i.e. from 
the equant point and the sun not lying equal distances from the center of the eccentric circle 
which is supposed to be the orbit of Mars. 
 
5. But if we bisect the eccentricity, like Ptolemy, and therefore get good results in latitude, 
now all the hypotheses are in error in longitude (near the octants). Kepler says that this is 
why he was forced to give up on the ancients and search into the matter for himself. 
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CHAPTER 19 
 
 

A Refutation, Using Acronychal Latitudes, of this Hypothesis 
Constructed According to the Opinion of the Authorities 

and Confirmed by all the Acronychal Positions 
 
 
6. Kepler’s main point: The CRUDE Hypothesis (as I am calling it) is refuted by 
observations (which are better preserved by bisecting the eccentricity), but also any 
hypothesis bisecting the eccentricity is refuted by observations. 
 
7. The observations he uses are “acronychal,” i.e. “night-rising,” i.e. when a planet, like 
Mars, rises just as the sun is setting, and Mars-Earth-Sun are in a nice straight line. What is 
the advantage or importance of such observations? Well, whether you think Mars orbits the 
Sun or orbits the Earth, you are looking at its true position in longitude and latitude at these 
times. So we level the playing field when it comes to the competing hypotheses. We assume 
little, observe much. 
 
8. Here is the basic story: 
 Ptolemy bisected the eccentricity, because the acronychal latitudes of the planets 
required this. 
 Neither Brahe nor Kepler bisected the eccentricity, because of the kinds of 
observations discussed in Ch. 16 (i.e. in order to match acronychal longitudes of Mars). 
 Copernicus, although he rejected the equant point altogether, retained elements in his 
system which corresponded to a perfectly bisected eccentricity in Ptolemy, and Kepler says 
the reason for this is that Copernicus did not make much use of observations! But Tycho 
Brahe “balked at this,” i.e. like Kepler he wanted to establish the ratio of eccentricity through 
observations, but then discovered that planetary motion in longitude required a different 
ratio. 
 But when this new ratio of the CRUDE hypothesis was contradicted not only by the 
acronychal latitudes—which that hypothesis was always bad at matching—but also by 
observations of the planet in other positions relative to the sun (which are affected by “the 
second inequality”, or the heliacal anomaly of a planet), Tycho turned his attention to the 
moon instead. Tycho Brahe gave up when he saw that bisecting the eccentricity wouldn’t 
work, but neither would the other ratio which the observations seemed to require. 
 
9. “I meanwhile stepped in,” says Kepler. 
 If we assume that the orbit is a simple circle and that there is an equant point, then the 
four observations require that AB ≠ BC. Thus Tycho made them in the required ratio, as 
opposed to Ptolemy (and Copernicus) who made AB = BC. 
 But if AB ≠ BC, the hypothesis is contradicted by observations of the latitudes of the 
planet in opposition. Thus Tycho gave up and studied the moon instead. Enter Kepler. 



 67 
 

 The latitudes near opposition require that AB = BC, and this is what moved Ptolemy 
to bisect the eccentricity (and in this Copernicus, who “made very little use of observations,” 
blindly followed Ptolemy). But that hypothesis is contradicted by longitudes of the planet in 
opposition (near the line of apsides and near the octants, as Kepler notes here in Ch.19). 
 
 
10. SO WHAT’S WRONG?  
 Kepler recounts the assumptions involved in the CRUDE model, so that he knows 
what to call into question in his attempt to start over. One assumption was (a) that the orbit 
of the planet is a perfect circle, and another was (b) that there is some one point inside the 
orbit, on the line of apsides, around which Mars describes equal angles in equal times. 
Kepler concludes that at least one of these assumptions must be false, for the observations 
used are not false. 
 Note the confidence he has in the observations of Tycho Brahe! 
 So “Equant” and “Circle” cannot both be true, and maybe both have to be dumped. 
 
 
 
12. DESTRUCTION OF THE C.R.U.D.E. HYPOTHESIS (WITH A NON-BISECTED 
ECCENTRICITY AS DETERMINED BY LONGITUDINAL OBSERVATIONS OF 
MARS NEAR OPPOSITION) BY LATITUDES. 
 Tycho and Kepler’s observations of Martian longitudes near opposition, on the 
assumption of a circular orbit with an equant, geometrically forced them to an eccentricity 
value of 11,332 in terms of the Martian orbital radius of 100,000 (i.e. the physical Sun and 
the midpoint of the Martian line of apsides are 11,332 units apart). 
 We will now see that this hypothesis is destroyed by the LATITUDES of Mars near 
opposition . . .  
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Kepler uses line EAD to designate the Martian line of apsides, with A the Sun. Circle CB is 
Earth’s orbit, N is a “NODE”, a point where the Martian orbit intersects the plane of Earth’s 
orbit. D is Martian aphelion (also the northern limit of its orbit), E is Martian perihelion (also 
the southern limit of its orbit). 
 Kepler wants to solve for the eccentricity, which can easily be determined from the 
ratio of EA : AD. But to do this, he needs observations, and he does not actually have 
observations of Mars when it is in perfect solar opposition AND exactly at aphelion and 
perihelion. So he must work from observations of Mars in solar opposition NEAR aphelion 
and perihelion, and reason back (from the geometry of the hypothesis) to what the values of 
various angles must be AT aphelion and perihelion. Let “∠DBH” mean the angle right at 
aphelion, and which we want to calculate. I will use lower-case letters, “∠dbh”, to designate 
the angle we can actually observe. 
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 He says we should conceive a circle of latitude through ADH, i.e. drop DH 
perpendicular to the plane of Earth’s orbit (or the ecliptic). Likewise EL is perpendicular to 
the ecliptic. 
 Note: In Ch. 13, Kepler has (by independent means) determined the angle BAD to be 
1° 50’. Plainly, in the diagram above, this angle of inclination of the Martian orbit to the 
plane of Earth’s orbit has been exaggerated, to make things easier to see. 
 
 
 But we need to know another angle to use the Law of Sines and begin our 
calculations—we need angle HBD. But we don’t have direct data about that angle. Rather, 
we have an observation of a Martian solar opposition in 1585 when it is near aphelion at D.  
 
 
 
 

 So let d be Mars in solar opposition near D (its aphelion), i.e. in 1585, while the earth 
is at b. This is “four or five degrees from the limit,” i.e. from aphelion. So ∠dbh is 
“apparent,” i.e. observed and known. Kepler now says ∠BAD was determined independently 
in Ch. 13 to be 1° 50’, and therefore the value of this angle “four or five degrees from the 
limit” (where ∠hAH is about 4° or 5°), i.e. the value of ∠bAd, will be somewhat less. He 
specifies that ∠bAd must be about 1° 49.5’, without explaining himself: “Therefore, at four 
or five degrees from the limit it will be 1° 49½’”. When he makes a similar move at the 
perihelion-end of Mars’s orbit, however, he is more explicit, so we will deal with it there. 
For now, let’s just assume he has a technique for finding ∠bAd since he is given ∠BAD and 
∠HAh. 
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 So now we have both ∠dbh and ∠bAd. But we also know the supplement of ∠dbh, 
i.e. ∠dbA. Hence we have two angles in rdbA. But that gives us the third angle, bdA, since 
the sum must be 180°. Moreover, we know the length AB, since that is the Earth-Sun 
distance (and we always know our position around the Sun, and we have a similar hypothesis 
for Earth’s motion as we do for Mars’s). 
 
 
 
 So we apply the Law of Sines: 
 
 sin (∠bdA) : bA = sin (∠dbA) : dA 
 
We solve for the unknown dA, and its length is 
now given, or at any rate the ratio of bA : dA is 
given. He says that 
 
if bA = 100,000 
then dA = 167,200 
 
 He repeats the procedure near 
perihelion, where Ae is the line near AE: 
 
if cA = 100,000 
then eA = 137,380 
 
Above, recall that he had some way of calculating the value of ∠bAd when given the values 
of ∠BAD and ∠hAH. He does the same thing now to get ∠cAe, except this time he explains 
himself. To see his technique, draw ea parallel to EA, and intersecting AN at point a. Kepler 
is giving us a proportion of four sines: 
 
 sine ∠EAN : sine ∠CAE = sine ∠eAN : sine ∠cAe 
 
He knows ∠EAN, since that is just 90°. 
He knows ∠CAE, since that is just the inclination of the Martian orbit. 
He knows ∠eAN, namely 64° of difference between the longitude of Mars and its node. 
 So the only thing he does not know in the proportion is sine ∠cAe, which he solves 
for, getting 1° 39’. 
 But how does he know the proportion is true? 
 
Well, since ea is parallel to EA, and el to EL, thus plane lea is parallel to plane LEA, and 
hence these planes intersect the plane of Earth’s orbit in parallel lines, i.e. la is parallel to 
LA. Hence the triangles lea and LEA are contained by parallel sides, and are therefore 
similar. 
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Hence  el : EL = ea : EA 
 
 
i.e. 
 
 
 
 
 
so 
 
 
or 
 
 
 
thus 
 
 
 
 
so 
 
 
or  sin(EAN) : sin(LAE) = sin(eAa) : sin(lAe) 
 
but  ∠LAE = ∠CAE 
and  ∠eAa = ∠eAN 
and  ∠lAe = ∠cAe 
 
so  sin(EAN) : sin(CAE) = sin(eAN) : sin(cAe) 
 
which is the proportion Kepler uses. 
 
 
So, knowing ∠cAe, we can now determine all the sides and angles of recA, just as we did 
with rdbA above after determining ∠bAd. This means we know the ratio Ad : Ab, and 
again we know the ratio Ae : Ac. But we also know the ratio Ab : Ac (from solar theory). 
Hence we know the ratio Ad : Ae, which at least gets us two lines in the plane of Mars’s 
orbit, although they do not lie along the line of apsides. By making further trigonometric 
calculations, Kepler is able to determine what the corresponding distances must be 
EXACTLY at aphelion and perihelion. He says that where bA is 97,500 and cA is 101,400, 
the values of DA and EA in these units will be: 
 
 DA = 163,150 
 AE = 139,000 
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Now he adds them together, and gets the whole 
line of apsides: 
 
 DE = 302,150 
 
Now cut it in half at K, and 
 DK = 151, 075 
and subtract DK from DA (163,150) in order to get 
the eccentricity, i.e. 
 AK = 12,075 
 
He now makes a proportional adjustment, so that 
the value of DK will be 100,000. This is because 
DK is the radius of the Martian orbit, which is 
perfectly circular on the present hypothesis. 
 
If DK = 100,000 (instead of 151,075) 
there AK = 8,000 (instead of 12,075) 
 
So, if we insist on our C.R.U.D.E. hypothesis, and apply these observations in latitude, those 
are the values we get. But then again the same hypothesis, together with certain observations 
in longitude (Ch.16), required us to say 
 
If DK = 100,000 
then AK = 11,332 
 
as Kepler says here in Chapter 19. 
 
And therefore the hypothesis has something false in it. 
 
 
 
12. DESTRUCTION OF THE “PTOLEMAIC” VERSION OF THE CIRCULAR 
HYPOTHESIS, i.e. ONE WITH A BISECTED ECCENTRICITY. 
 We could call this hypothesis C.W.A.B.E., for Circle With A 
Bisected Eccentricity. Let the circle of diameter DE, center C be the 
Martian orbit, and let A be the Sun, C the equant, and let the eccentricity be 
bisected, i.e. let AB = BC = 9282 (where radius BD = 100,000). 
 Now Kepler brings up a time of solar opposition in 1593, where the 
Earth is at U, the sun is at A (of course), and Mars is at P. Hence we could 
observe the direction of the line AP at that time, and it was 12° 16’ into 
Pisces. So if we draw a circle around A as center, with radius AD, then 
Mars has moved through arc DMW in longitude around the Sun between its 
last aphelion and its location observed at solar opposition in 1593. 
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 But since the time is given, and the mean speed of Mars in longitude is given, and the 
orientation of Mars’s line of apsides is given, therefore the hypothesis determines what 
Mars’s longitude should be. Let’s see if it matches the observation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 What we are given by the theory is: 
 
 ∠ECP = 11° 3’ 16’’  (This is given basically by the TIME of the solar 
opposition, since C is the equant, the point of uniform motion) 
and AC = 18564   (the whole of the bisected eccentricity) 
and BC = ½ AC = 9282 
where BP = 100,000 
 
But this allows us to apply the Law of Sines to solve for ∠CPB thus: 
 
 sin (∠BCP) : BP = sin (∠CPB) : BC [Law of Sines, rBCP] 
but ∠BCP = ∠ECP = 11° 3’ 16’’ 
so the only unknown is sin (∠CPB). So we solve for that sine, and then, using a table of 
sines, we have the value of ∠CPB, namely 
 
 ∠CPB = 1° 1’ 12’’ 
 
Kepler calls this angle “THE PHYSICAL PART OF THE EQUATION,” presumably 
because the triangle CPB includes angle BCP, which is about C, the point of the planet’s 
uniform motion, and hence a point connected to its true physical behavior. The equant has 
physical significance for Kepler, since if the planet moves uniformly around C, it does not 
move uniformly around the Sun, but speeds up in proximity to it, as geometry dictates. And 
that makes physical sense to him. 
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But now, knowing both ∠BCP and ∠CPB, we also know their 
sum, and hence we also know the exterior angle EBP. 
 
 ∠EBP = 12° 4’ 28’’ 
 
Hence we know also the supplement of this angle, 
 
i.e. ∠DBP = 180° – ∠EBP = 167° 55’ 32’’ 
 
and so now we also know the arc DZP as measured around point 
B, since it is 360° minus the angle DBP, 
 
i.e. arc DZP = 192° 4’ 28’’ 
 
which Kepler designates as 6S 12° 4’ 28’’, i.e. “six signs”, or 180°, plus 12°, plus 4’ 28’’ 
(each sign of the zodiac is 30°). 
 
Now let’s look at rBAP: 
 
 AP2 = AB2 + BP2 – 2AB·BPcosABP [LAW OF COSINES]1 
 
But AB = 9282  (the theory we are testing says so) 
and BP = 100,000 
and cosABP = cosEBP = cos 12° 4’ 28’’ 
 
So the value of AP is now given (by a table of cosines). 
 
Now, using the Law of Sines in rBAP, we have 
 
 sinBPA : AB = sinABP : AP 
 
and the only unknown is sinBPA. So we solve for that, and using a table of sines, we will 
have the value for ∠BPA, 
 
i.e. ∠BPA = 1° 13’ 26’’ 
 
Kepler calls this angle “THE OPTICAL PART OF THE EQUATION,” presumably 
because it includes the line AP, which is our line of sight (since we are at U). 
 
 
 
 
 
 

                                       
1 Kepler actually uses the Law of Tangents. 
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Now draw AQ (out to the circle of radius AD) parallel to BP. 
Now ∠EAQ = ∠EBP  [since AQ is parallel to BP] 
but arc DZP = 180° + ∠EBP 
and arc DMQ = 180° + ∠EAQ 
thus arc DZP = arc DMQ  [i.e. in degrees, not linearly] 
 
But Mars’s longitude around the Sun, measured from aphelion D, is arc 
DMQ plus angle QAP, 
 
i.e. longitude = arc DZP + ∠QAP 
 
But ∠QAP = ∠BPA  [again, by the parallels AQ, BP] 
and ∠BPA = 1° 13’ 26’’  [as determined by theory, above] 
so longitude = arc DZP + 1° 13’ 26’’ 
i.e. longitude = 6S 12° 4’ 28’’ + 1° 13’ 26’’ 
 
But that is the longitude of Mars from aphelion. To get its longitude from the spring equinox 
(in order to compare it with the observed value), we have to add in the longitude of the 
aphelion itself (from the spring equinox), namely 4S 28° 55’ 43’’ 
 
So the total theoretical longitude of Mars at the time of solar opposition in 1593 should be: 
 
 4S 28° 55’ 43’’  [longitude of aphelion] 
+ 6S 12° 4’ 28’’   [arc DMQ from aphelion] 
+ 0S 1° 13’ 26’’   [arc QW] 
 11S 12° 13’ 37’’ from the spring equinox 
or 12° 13’ 37’’ into Pisces. 
 
But the actual observation was 12° 16’ into Pisces. That is an error by a full 3’ of arc, which 
is unacceptably large—especially since we are talking about Tycho Brahe. 
 
 
 
13. A GROSSER ERROR. 
 Kepler adds “This appears more clearly at 17° Cancer in 1582,” where the error 
produced by the hypothesis of bisecting the eccentricity is almost 9’ off from the 
observation. 
 Here Kepler notes that this discrepancy of 8 minutes, being so small, makes it clear 
why Ptolemy was satisfied with his bisected eccentricity, and why many people would be 
satisfied with the C.W.A.B.E. hypothesis. He notes that Ptolemy admitted that he did not get 
more precise than 10 minutes or a sixth of a degree, in his observations. To put that more 
concretely, he observed the heavens only to a precision within one third of the apparent 
diameter of a full moon, no more. But, says Kepler, divine providence gave us Tycho Brahe, 
who made far more precise observations of the heavens. Being off by 8 or 9 minutes from 
Tycho’s observations means the hypothesis is simply wrong. 
 Back to the drawing board. 
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KEPLER 
 

DAY 38 
 

Summary 21 
Chapter 21 

 
 
 
 

SUMMARY OF CHAPTER 21 
 
We now move ahead to Chapter 21 of the Astronomia Nova. The title of the chapter is “Why, 
and To What Extent, May A False Hypothesis Yield the Truth?” 
 
Kepler summarizes this chapter thus:  
 

Causes are sought from geometry that would result in the truth’s proceeding 
from a false hypothesis; and it is shown to what extent this can happen. And 
this is the end of the second part, in which I have imitated the ancients. 
(William H. Donahue translation) 

 
 
 

CHAPTER 21 
 
 
What is Kepler doing in this chapter? 
 
1. This chapter investigates what its title promises, “Why, and to what extent, may a false 
hypothesis yield the truth?” It is very philosophical in nature. Kepler is anxious to defend the 
basics of the Copernican model, that is, heliocentrism, from the attacks made on it by certain 
logicians. He makes reference to a certain “axiom of the logicians” which he particularly 
abhors, namely “that the true follows from the false.” These logicians would have it that 
Copernicus’s theory does no more than produce conclusions which agree with the 
observations, but it is possible for the true to follow from the false—hence the fact that true 
things follow necessarily from Copernicus’s model in no way testifies to the truth of that 
model. 
 The axiom he refers to can be illustrated with a silly example: 
 
 Every Cat is a Giraffe 
 Every Giraffe is an Animal 
so Every Cat is an Animal 
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So the true conclusion follows necessarily from the false premises—and therefore the truth 
of the conclusions of a theory do not prove that the theory is true.  
 
 
2. Kepler hates that argument. He thinks Copernicus is right in a general way, and that we 
can know this by arguing from the manner in which it necessarily produces certain 
consequences which check out. He cannot believe that it might be a mere coincidence that so 
many of the facts follow necessarily from the heliocentric view, while these same facts are 
mere coincidences and not at all necessary in Ptolemy’s view. Rather, the cause of this is that 
Copernicus has the truth, and Ptolemy does not. 
 
 
3. Kepler does not think that what follows from Copernicus’s theory is always the truth. We 
saw, in Ch.19 for instance, that some incorrect things follow from the details of his 
hypotheses. 
 
 
 
 
4. He says that false hypotheses may SIMULATE the truth, as far as 
longitudes are concerned, at least, to within the limits of observational 
precision. He demonstrates this statement with a rather horrendous diagram, 
which I will produce in stages, so that it is less confusing. 
 
 

 
 
5. FIRST CIRCLE, OP, CENTER A. If a body moves around 
the observer at A, and it spends equal times on both sides of 
PM, it could be moving uniformly about center A on the 
circle with center A, radius AO (but also on an infinity of 
other circles and curves!). 
 
 
 
 

 
 
6. SECOND CIRCLE, MN, CENTER C. But suppose 
the body spends unequal times in the quadrants of 
circle OP, but equal times in the angles KAO, OAL, 
LAP, PAK. Thus the maximum error of our first 
hypothesis is ∠VAK. If so, we can account for that 
with a new circle of center C, radius CK, diameter 
MN, and make the planet move uniformly about center 
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C now. (He notes that Mars in fact spends unequal times in the quadrants, and the ∠VAK is 
10½°.) 
 So this new circle will correctly represent the location of the planet along the lines 
AM, AN, AK, AL. 
 
 
 
 
7. THIRD CIRCLE, HI, CENTER B. 
Now suppose (as is true for Mars) that 
in the eighths of periodic time, that is, 
half way through the times when the 
star is appearing along the lines AM, 
AN, AK, AL, it does not appear along 
the lines AQ, AR, AS, AT, that is, 
along the lines pointing to the eighths 
of our new eccentric circle, circle MN, 
but instead is above AQ and AR at AF, 
AE, and below AS and AT at AG, AD. 
 Assume, in other words, that 
the planet does not spend equal times 
even in the octants of the new eccentric 
circle. So now he draws yet another 
circle, now with a center at B, but 
keeping C, the center of our failed 
second circle, as the point of uniform angular motion—in other words, it is an equant. 
 The new facts alone do not force us to this, but rather three other things freely 
assumed and not forced by demonstration might lead us to introduce this equant-hypothesis, 
namely (a) that we don’t want to disturb our prior hypotheses too much, (b) that we want to 
keep the point of uniform motion at C, thus fixing the distance AC (on account of the angle 
KAV in the earlier diagrams), which is not absolutely necessary, and (c) that we insist on 
keeping the planet’s path circular. 
 So we make a new eccentric 
path as circle HI, geometric center B, 
while keeping the point of uniform 
motion at C. He says that (presumably 
for Mars) the errors at the eighths of 
the period were 9’ in one place, 28’ in 
another, vs. the horrendous ∠VAK 
(which is 10½°) of our first hypothesis, 
circle OP. But our new equant 
hypothesis, circle HI, with C the center 
of uniform motion, entirely absorbs 
these little errors, and gets the 
longitudes exactly right for 8 places of 
Mars. 
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8. WHAT ABOUT THE SIXTEENTHS? Now suppose we have an error at the sixteenths! 
This, he says, will be much smaller than our prior errors. He uses an estimating proportion: 
 (a) If the error at the 4ths was 10½°, then corrected by a new circle, 
 (b) but this new circle correct at the 4ths was itself in error at the 8ths by 9’ and 28’ 
(in different places), 
 (c) then, supposing the circle which is correct at the 8ths will be in error at the 16ths 
by a proportionally smaller amount, we are talking about a new error, in the 16ths, which has 
the same ratio to 9’ that 9’ has to 10½°. But 10½° = 630 minutes, i.e. 70 times 9’. So the 
error was reduced to 1 seventieth what it was before, going from one circle to the next. That 
means, going to the 16ths, we can expect the error to be somewhere around one 70th of 9’, 
i.e. about 7 arc seconds! 
 Kepler notes that even just at the sixteenths of the period, we have already entered 
into hypotheses that will (probably) be wrong everywhere except at 16 places, and yet 
undetectably so, as far as naked eye astronomy is concerned. 
 
 
9. His main point seems to be this: so long as we stick to perfect circles and uniform motion, 
we could easily be making our hypothesis less and less distinguishable in its effects from the 
appearances, and yet have it still be false throughout. Our hypotheses will be off by too small 
an error for us to discern by the senses, but never actually be on the true path. 
 
 
10. Kepler now concludes that it is clear to what extent and in what way the truth can follow 
from false principles. He appears to be saying that only the true hypothesis produces all of 
the true points on the orbit, and thus matches with all conceivable observations. False ones, 
which are retrofitted to some finite number of observations, will generally be right about 
those (of course), but wrong about all others, although perhaps undetectably so. How, then, 
are we to discern the true from the false? By coming up with physical reasons which dictate 
the geometry of things. If, instead of merely fitting our hypothesis to observations, we 
deduce what all the observations should necessarily be from physical causes, and then we are 
not merely right about some of the observations, but all at once we are right about all of 
them, then we have found the truth. That is the ideal. And Copernicus is an instance of that, 
as far as his general model is concerned. He said that the Sun is the mighty body in the 
universe, not the Earth, and so things should be moving around it, not it about the earth. 
From the physical reason comes forth a single hypothesis about the motions of the heavens, 
namely that everything moves around the sun—and from that come forth, with necessity, all 
the basic facts about the anomalies, as we saw back in Copernicus. 
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KEPLER 
 

DAY 39 
 

Summaries 22, 24 
Chapters 22, 24 

 
 
 

SUMMARY Ch. 22 
 
 
1. In this summary, Kepler notes that he will “Begin the whole inquiry anew” in Ch. 22, 
which makes it very explicit that this book is a record of a discovery process, not an orderly 
presentation of demonstrative information. 
 
2. He says that he began to suspect an equant must be present in the theory of the Sun, 
though no one had ever posited that before. He will present a way for finding observations 
from which to demonstrate the presence of such an equant. What is the significance of the 
Earth’s orbit (or the Sun’s, for Ptolemy) having an equant? He said in his introduction that 
the solar theory (or Earth’s motion) is built, whole and entire, into the theory for every 
planet. For the inner planets, their own orbits are like epicycles, and Earth’s orbit is their 
deferent (cf. Brahe’s vision, where the [mean] Sun is at the center of the inner planets’ 
epicycles, which are carried along with the Sun, its eccentric orbit around us being their 
deferents). For the outer planets, their epicycles are Earth’s orbit (recall the equivalence 
proof at the end of Copernicus, showing what he “could have had”). This means that the 
epicycles of the outer planets have an equant in them, and so does the deferent of the inner 
planets. Equants galore! 
 
3. The interesting thing about equants (for Kepler) is that they make everything speed up as 
they approach the Sun, and slow down as they recede from it. They make physical sense to 
him. (To us, they tend to look like a leftover from ancient astronomy. Really there is no such 
thing as an equant-point for any planet’s orbit, nor is there any reason to believe in any such 
thing, unless you accept the old axioms.) 
 So we can conceive of this as a way of answering a possible objection, i.e. “If your 
physical causes make equants necessary, then why would Earth’s orbit be an exception?” 
Answer: it isn’t. 
 
4. Brahe used to account for the data by making the Earth’s orbit (or rather the Sun’s around 
us) grow and shrink, as though it was breathing. That way of thinking about it seems crazy to 
Kepler. Nature doesn’t operate that way. Throbbing epicycles are not allowed. 
 
5. He will begin afresh with the heliacal anomaly. (Recall that the “first inequality” is the 
zodiacal anomaly, the “second inequality” is the heliacal.) So it appears he will be getting to 
the equant in the Earth’s orbit through the theory of the planets. 
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SUMMARY Ch. 24 
 

 
In this summary, Kepler promises to prove the same thing again as was proved in Ch. 22, 
namely, that there must be an equant in the Sun’s (or Earth’s) motion. He will demonstrate 
this from certain observations of Mars, and we will pay more attention to his argument in 
this chapter than to the one in Ch. 22. 
 
 
 

CHAPTER 22 
 
 
 Kepler begins this chapter by noting that in his Mysterium Cosmographicum, when 
he was explaining the physical cause of the Ptolemaic equant (or, equivalently, of the 
Copernican-Tychonic second epicycle), he raised an objection against himself: if the cause 
he were proposing were the true cause, then shouldn’t it be true universally for all planets? 
But up till Brahe’s and Kepler’s time, no one thought the Earth’s orbit (or the Sun’s) 
required an equant. 
 The “physical cause” according to Kepler lies in the Sun, and IF the Sun is the chief 
physical cause of the motions of the planets, THEN they should move faster when closer to 
it, slower when further away, and therefore they cannot sweep out equal angles in equal 
times around it, but must do so (if they do so at all) around some OTHER point. And why 
can’t that point be their own geometrical center, if their center is away from the Sun? 
Because the Earth is speeding up and slowing down on its own circular orbit, and so does not 
sweep out equal angles in equal times around its own geometric center. So his physical 
theory requires something like an equant (if there is to be any point around which equal 
angles are swept out in equal times). 
 
 But Brahe told Kepler that the Earth’s orbit is growing and shrinking. That was 
Kepler’s first clue that Earth, too, had an equant after all: Kepler knew that there could be no 
physical cause of an orbit growing and shrinking. Something else was going on. Let’s 
illustrate the sort of thing Kepler is talking about with a diagram. 
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Let A be the Sun, B the center of an outer planet’s deferent, E its equant, C the center of the 
epicycle at a given time, AV the line through C, ∠VCP the angle of movement on the 
epicycle dictated by the time. Hence the star ought to be at P. But suppose it appears along 
the line ATZ. This could be either because ∠VCP was taken around the wrong point, and 
should be around Q, a kind of equant in the epicycle (which is what Kepler will say), or it 
could be because the star is at T, and the epicycle has shrunk from what we knew it to be at 
other points in the orbit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A

B

Q
C

V

Z

P
T

E



 83 
 

CHAPTER 24 
 
 

A MORE EVIDENT PROOF THAT THE EPICYCLE OR ANNUAL ORB 
IS ECCENTRIC WITH RESPECT TO THE POINT OF UNIFORMITY 

 
 
1. This chapter does not prove conclusively that the Earth’s orbit “has an equant,” i.e. it does 
not prove that there is a point of uniform angular motion, but only that if there is one, it is not 
at the geometric center of the Earth’s (presumably) perfectly circular orbit. 
 
2. In the first sentence of the chapter, he mentions the “anomaly of commutation.” 
Seemingly, Kepler uses “anomaly” to mean any angular motion (he uses “inequality” to 
designate what we call an “anomaly”). So an “anomaly of commutation” seems to mean just 
some “angular measure of movement.” 
 The “true” or “equated” “anomaly of commutation” means angular motion around 
the center of the solar system (the Sun, for Kepler, but Earth for Ptolemy), while the “mean 
anomaly of commutation” means angular motion around an equant (a point of reference for 
uniform angular velocity). 
 
 
 
 
3. More vocabulary: 
 
∠CEG = “mean anomaly” 
∠CBG = “eccentric anomaly” 
∠CAG = “equated anomaly” 
 
∠EGA = “the equation” 
∠EGB = “the physical part of the equation” 
∠BGA = “the optical part of the equation” 
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4. Still more vocabulary: “MEAN LONGITUDE.” 
 
P is the actual Planet, which moves from P1 (at Aphelion, A) to P2. 
M is the Mean planet, which moves from M1 (at Aphelion, A) to M2. 
S is the Sun. 
V is the Vernal equinox. 
 
“Mean longitude” refers to the longitude of the mean planet from the 
Vernal equinox as measured around the Sun. At aphelion, the longitude 
of the actual planet and that of the mean planet coincide, i.e. ∠VSM1 = 
∠VSP1 = ∠VSA. But elsewhere, they differ, e.g. later on mean 
longitude is ∠VSM2, which is not the same as the actual longitude of 
the planet, ∠VSP2. 
 
Mean longitude is therefore like a measure of time in angles, starting 
from the spring equinox by convention. 
 
Kepler and Brahe were so exact about longitude, that they also took 
into account the precession of the equinoxes in recording any longitude. 
This is because “the spring equinox point,” the conventional point of 
reference for longitudes, precesses about 51’’ per year—that is Brahe’s value, which Kepler 
uses. 
 
 
 
 
 
5. BACK TO THE ARGUMENT. 
 Now we want to see how Kepler establishes that the point of uniform angular 
velocity, for the Earth, is not the geometric center of its perfectly circular orbit. 
 By Kepler’s physical principles, the Sun is the chief motive force moving the Earth. 
But Earth’s orbit is eccentric to the Sun, and therefore gets closer to it and further from it, 
and therefore should speed up and slow down on its own circular orbit, and therefore should 
not travel uniformly about the center of its orbit. Therefore the center of its orbit is distinct 
from the center of its uniform motion. Therefore Earth has an equant. 
 But do observations warrant this? Yes . . . 
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6. SETTING UP THE ARGUMENT. 
 He works from four locations of 
Earth on its own orbit, at four different dates 
when Mars was at the same longitude, very 
near its node (so that we have no latitudes to 
worry about, and we can regard everything 
as being in one plane). 
 
 
 
 

A = Mean Sun = Earth’s point of uniform motion. 
DG = Earth’s presumed orbit. 
P = Physical Sun. 
Q, H, E, Z = 4 positions of Earth when Mars is at K, near one of its nodes (at 4 different dates: 
 Q = Mar 1590 
 H = Jan 21 1592 
 E = Dec 8 1593 
 Z = Oct 26 1595 
AL = Mars’s line of apsides (through the mean Sun vs. through the physical Sun) 

 
 
 
Since Mars returns to K in equal times (K is a real point on its orbit, not just an apparent 
position from Earth); 
 • therefore equal times have elapsed between the 4 positions of Earth; 
 • therefore Earth has swept out equal angles about point A during those intervals (even if in 
each interval it went more than 360°); 
 • therefore ∠QAH = ∠HAE = ∠EAZ. 
 
 
7. THE ACTUAL ARGUMENT. 
 • We know QA in position from the theory of the mean Sun. 
 • We know AK in position from the Mars theory correlated to the mean Sun. 
 • So we know ∠KAY. 
 • So we know ∠QAK = 180° – ∠KAY. 
 • And we know ∠AQK, since Q is us, K is the observed position of Mars, A is the 
calculated position of the mean Sun. 
 • So we know ∠QKA = 180° – ∠QAK – ∠AQK [Euclid, Elements, 1.32] 
Calling AK = 100,000 [our standard for all 4 measurements], we now use the Law of Sines: 
 
 sin AQK : AK = sin QKA : QA 
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Now solve for AQ in terms of AK. 
Repeat for AH, AE, AZ. 
Kepler finds they are unequal. 
 • Therefore A, the point around which Earth moves with uniform angular velocity, cannot be 
the geometric center of Earth’s circular orbit (which is more toward B). 
 • Therefore A is an equant. 
 
Q.E.D. 
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KEPLER 
 

DAY 40 
 
 

Chapters 32, 33 
 
 

CHAPTER 32 
 

THE POWER THAT MOVES THE PLANET IN A CIRCLE 
DIMINISHES WITH REMOVAL FROM ITS SOURCE 

 
Up to this chapter, Kepler has shown: 
 1) The old theories won’t work (they disagree with the observations). 
 2) All the planets, including Earth, have an equant (or at any rate do not move 
uniformly around the geometric centers of their own orbits), and so he has removed the 
obstacle to his theory regarding the physical cause of the equant point . 
 
So now he feels justified in advancing his theory of the physical 
cause of equant-points, namely that the planet speeds up near the 
Sun, and slows down when further away from it. 
 
One way to argue for this notion is as follows: 
 
 
Let DFEG be the planet’s eccentric orbit, 
 with center B 
 aphelion D 
 perihelion E 
 the sun A 
 the equant point C 
And let AB = BC, using the “Ptolemaic form” or “bisected eccentricity”. 
 (We have already shown that this model is too simple and does not agree entirely 
with the facts. But for the moment we are abstracting from its deficiencies and using it to see 
why Kepler thought that the speeds of the planet were inversely as its distances from the 
sun.) 
 Through C draw FCG, intersecting the circular orbit at F very near aphelion, and at G 
very near perihelion. 
 
Prove:  speed of planet in arc DF : speed in arc EG = EA : DA 
 
Now  ∠FCD = ∠GCE   [vertical] 
so  time of arc DF = time of arc EG [equal angles about C, equant] 
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But when two uniform motions are allowed to go for the same time, the distances traversed 
are as the speeds. And although the speed in arc DF is not uniform, and neither is the speed 
in arc EG uniform, since in neither arc does the planet remain a constant distance from the 
Sun (the cause of the motion), nevertheless, the smaller the amount of time we take, the 
smaller these arcs; hence the smaller the diversity of distances from the sun in each; hence 
the nearer the speed in each comes to being uniform. Taking them small enough, then, we 
treat them as uniform, and they take place in equal times, and the distances they accomplish 
are the arcs themselves, 
 
So  speed of planet in arc DF : speed in arc EG = arc DF : arc EG 
 
Now, the smaller we take these arcs, and the nearer we are to D and E, the less those arcs 
differ from the chords DF, EG. Hence we get as near as you like to having the proportion: 
 
  speed in arc DF : speed in arc EG = DF : EG 
 
But also, as F is taken nearer to D, and G nearer to E, CF becomes as close as we like to 
being equal to CD, and CG becomes as close as we like to being equal to CE. So these 
triangles are becoming as nearly isosceles as we like. Therefore we get as near as you like to 
having the proportion: 
 
  FD : DC = GE : EC 
 
or  DF : EG = DC : EC   [alternating] 
 
And so the following proportion becomes as close to true as we like, as F and G are taken 
nearer and nearer to aphelion and perihelion respectively: 
 
  speed in arc DF : speed in arc EG = DC : EC 
 
But, thanks to the bisected eccentricity, 
 
  DC = EA 
and  EC = DA 
 
So, as near as you please, we approach this proportion as we take 
tinier arcs near aphelion and perihelion: 
 
  speed in arc DF : speed in arc EG = EA : DA 
 
Q.E.D. 
 
That is only a single pair of locations for the planet, namely at D and E, but Kepler seems to 
take it as a general rule that the speed of the planet is inversely as its distance from the sun. 
(In Newton’s Principia, in the corollaries to the first Proposition of Book 1, we find that the 
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true rule for the ratios of the speeds of the planet at different locations in its orbit is 
somewhat different from what Kepler supposes.) 
 
 
QUESTION: The argument above seems to suppose that the triangles CDF and CGE get as 
near to being similar as we please, as we shrink the arcs accomplished in equal times. But 
aren’t those triangles exactly similar? 
 Yes, they are, but in the opposite way we need them to be similar for this proof! 
 Since ∠FDE stands on F and E, and ∠FGE also stands on F and E, therefore, 
 
 ∠FDE = ∠FGE 
and ∠GFD = ∠DEG for the same sort of reason. 
 
So rCDF is similar to rCGE. 
 
But their similarity, given which angles in them are equal, gives us the proportion: 
 
 FD : DC = GE : GC 
 
whereas we want to say 
 
 FD : DC = GE : EC 
 
So we need to argue from the fact that GC and EC differ from each other as little as we like, 
as we approach perihelion and aphelion. 
 
 
QUESTION: Can we make the same sort of argument for any 
other two points on the orbit which lie on a straight line through 
the equant-point? No, we cannot. Nor is Kepler’s rule true for 
other pairs of points. Aphelion and perihelion are the only two 
places where his rule is exactly correct (and coincides with 
Newton’s rule). 
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CHAPTER 33 
 

THE POWER THAT MOVES THE PLANETS 
RESIDES IN THE BODY OF THE SUN 

 
 
 
[1] CHANGE IN DISTANCE FROM THE CENTER IS THE CAUSE OF CHANGE IN 
SPEED. 
 Kepler begins this chapter with an “axiom” of the philosophy of nature: 
 
If X and Y occur at the same time and in the same manner or measure, 
then either (a) X is the cause of Y 
or  (b) Y is the cause of X 
or  (c) some third thing is the common cause of both X and Y. 
 
But it is just so with the speed of a planet around the Sun (call this “X”), and with the inverse 
of its distance from the Sun (call this “Y”). So either one of these is the cause of the other, or 
some third thing is the cause of both. 
 But, says Kepler, it is not possible to imagine some third thing concurrent with both 
the speed of the planet and its distance from the sun which could be the cause of both. 
Therefore NOT (c). 
 So one of these must be the cause of the other. But which is cause of which? 
 Well, “distance” is prior to “motion” and “speed,” since you can have distance 
without motion, and conceive it without motion, but motion and speed cannot be, or be 
conceived, without distance. Therefore, thanks to the priority of Y to X, or of distances to 
motions, it is impossible for X to be cause of Y. Therefore NOT (a). 
 And therefore (b) is the truth in this case. That is, the solar distances of a planet are 
the reason for its various speeds. 
 
 
[2] THE CAUSE OF THE SPEED IS AT ONE ENDPOINT OF THE DISTANCE, i.e. AT 
THE END THE PLANET IS NOT ON. 
 Taking it as evident from what has been said so far that the cause of the variation in a 
planet’s speed must lie at one end or the other of the Sun-planet line (since the sun and the 
planet are the only two relevant bodies along that line, and mathematical points are incapable 
of being physical causes), Kepler will now argue that the cause must not lie at the planet’s 
end, but at the Sun’s: 
 (a) Since the body is not made heavier or lighter by approaching or receding 
(Whoops! That is not quite true! But he takes it as evident, presumably because the body’s 
nature is not altered by a change of place), 
 (b) Since the body would get tired by speeding itself up and slowing itself down, 
 (c) Since it has no means of moving itself, i.e. no wings, no solid orbs. 
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[3] THE CAUSE OF THE SPEED IS AT THE CENTER OF THE WORLD. 
 This is the alternative. And as soon as we embrace it, the idea suggests itself to us 
that the motive cause uses the center of the world like a fulcrum, and moves the planets as if 
by levers, so the further they are, the harder it is to move them (just as with a see-saw or a 
door or any other kind of lever). And that is the reason they slow down at greater distances 
from that point. 
 
 
[4] THE SUN IS THE CENTER OF THE PLANETARY SYSTEM. 
 So what is this “center”? Is it just a mathematical point, with no power at all? Is it the 
Earth, as for Ptolemy? Is it the Mean Sun? Is it partly the Mean Sun, and partly the Earth, as 
for Brahe? 
 He has already given probable arguments (e.g. in the Introduction) that it is the body 
of the Sun. 
 He asserts that the lines of apsides of the planets pass through the body of the Sun. 
Hence he concludes that: 
 
 
[5] THE MOTIVE POWER IS IN THE SUN. 
 
 
[6] THE SUN IS THE CENTER OF THE WORLD, AND DOES NOT MOVE FROM 
PLACE TO PLACE. 
 He gives us another “either-or” (this whole chapter is a marvelous example of various 
logical procedures): 
 EITHER a motive power in the Sun moves Earth & all planets, 
 OR a motive power in the Earth moves the Sun & all planets. 
Brahe destroyed the orbs, so these cannot be appealed to as causes of motion for the planets. 
 And Kepler has proved there is an equant in the theory of the Earth’s motion, or else 
of the Sun’s motion, depending on your view of the matter. But that means the Earth moves 
faster when it is near the Sun, OR ELSE THE SUN MOVES FASTER WHEN NEAR THE 
EARTH. And therefore, thinking as a physicist (and employing the Axiom used earlier), we 
must say either that the Sun moves the Earth, or that the Earth moves the Sun. The idea that 
the Earth moves the Sun is absurd. Therefore the Sun moves the Earth. 
 Kepler realizes he must, by his principles, admit that the Earth moves the Moon, and 
that is hard for people to believe. He thinks of the Moon and Earth as kindred bodies, since 
he sees that the tides are caused by the Earth’s seas being attracted to the Moon. 
 
 
[7] THE KINSHIP OF THE SOLAR MOTIVE POWER WITH LIGHT. 
 If we have two concentric circles, radii R and r, with the motive power of the sun M 
at the common center, then, says Kepler, we have shown that: 
 
 power of M at distance R : power of M at distance r = r : R 
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But that is the same rule for “candle power,” or illuminating power in a light source. So this 
power weakens with distance by the same rule that light does, and therefore the motive 
power of the sun appears to be akin to light. 
 (Kepler does not quite have the rule by which the force on the planets keeping them 
in their orbits varies with distance from the Sun. It is not inversely as the distance, but 
inversely as the square of the distance. Nonetheless, the kind of argument he is now making 
is remarkable, and Newton himself will use one very like it in Principia Bk. 3 Proposition 4, 
to establish that the force keeping the moon in its orbit is its weight toward earth. Newton 
argues there that the force keeping the moon in its orbit has the same quantitative properties 
as the force drawing a stone to earth, and therefore it is the same type of force. Here, Kepler 
is arguing that the force keeping planets in their orbits obeys the same quantitative rule as 
light, and therefore that force must be of much the same nature as light.) 
 Nonetheless, he says it is NOT the Sun’s light itself which is its motive power, since 
it is hindered by the opaque, and so darkness would slow bodies down, e.g. during eclipses, 
which does not happen. Again, light spreads from the Sun in straight lines, but the motion of 
the planets is in circles. 
 NOTE: The weakening of the power as it spreads out (like a circle of light from a 
flashlight which is made bigger by receding from the wall) explains not only why one planet 
speeds up and slows down, but also why planets further from the Sun have longer periods. 
This is a First Law of planetary motion which Copernicus thinks very important—but he is 
unable to give a reason for it, given his physics. 
 
 
[8] THE MOTIVE POWER IS AN IMMATERIAL SPECIES OF THE SOLAR BODY. 
 Kepler speaks of the solar influence as an “immaterial species.” It is “immaterial” 
because, like light, nothing of it is lost in transmission from a smaller circle to a greater one 
(it is just less intense). 
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KEPLER 
 

DAY 41 
 

 
THINKING PHYSICALLY ABOUT PLANETARY MOTION 

(Chapters 34, 38, 39) 
 
 
 
 

CHAPTER 34 
 

THE SUN IS A MAGNETIC BODY, AND ROTATES IN ITS SPACE 
 
 
In the chapters we are now drawing from, Kepler is thinking in a serious way for the first 
time in human thought about the physics of celestial motions. What sorts of causes produce 
those motions? How do they operate? 
 He observes that the only way the “species” flowing from the Sun could move the 
planets is by whirling around (a thought later imitated by Descartes’ theory of “vortices”, 
which Newton disproves in many ways). And the Sun must spin to cause this motion in the 
“species” emanating from it. The poles of the Sun’s rotation, obviously, are the poles of the 
zodiac, since the motions of the planets are caused by the rotation of the Sun, and they move 
(basically) through the zodiac. Therefore the Sun is the natural cause of the zodiac, says 
Kepler. 
 Also, since the planets don’t move with equal speeds, therefore they lag behind the 
whirl which follows the speed of the Sun. Therefore the planets are material things, and are 
inclined to rest. (Note that this is not quite Newton’s idea of inertia, since he is not saying 
that they tend to keep going in uniform motion in straight lines if left alone. Rather, the 
planets are inclined to slow down and stop.) 
 Kepler goes on to observe that since 
 
 
 
 
 
therefore it is plausible that 
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He works from the proportion: 
 
  Earth : Moon = Sun : Planets 
 
The Earth rotates in the same direction that the Moon orbits it, and it does rotate faster than 
the Moon orbits it. So that gives us a way of calculating the (probable) period of the Sun’s 
rotation. Kepler calculates that the Sun rotates once in about three days. (Later, by means of 
Sunspots, it will be possible for astronomers to observe the true period of the Sun’s rotation.) 
 
Kepler observes that magnets weaken with distance, and the Earth is a magnet (as he learned 
from Gilbert). So, given the similarities, he concludes that the Sun and the Earth are magnets 
and move bodies by magnetism. The Sun seems to influence Earth from a distance, and the 
Sun is a large celestial body like Earth, and we know that Earth is a magnet. And the best 
precedent in our experience for action between bodies at distances from each other is 
magnetism. (It would be interesting to ask him why he did not consider weight!) 
 
Although he is wrong on some points, Kepler is right in a general way. The Sun does rotate, 
and in the same direction as the planets orbit it, although its period is about once in 27 days 
(it is a bit faster in the equatorial regions, 26 days, and slower around latitudes of 60°, i.e. 31 
days, so the rotation is “differential”). Also, it is a huge magnet, a giant dynamo. On the Sun 
we observe Sunspots, pores, faculae, regions of intense magnetic field. The field is generated 
below the atmosphere, within the enormous rotating mass of gas (2×1030 kg). As they move, 
electrons and protons create an electric current which induces a magnetic field. Also, because 
of the Sun’s rotation, the magnetic field’s force lines rooted in the solar corona form an 
Archimedes spiral around the Sun, radiating out all through the solar system. 
 He is also right to try to assign a familiar force to the influence which the Sun has 
over the planets. But he is mistaken in thinking that the Sun’s magnetism is the force by 
which it holds the planets in their orbits. 
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CHAPTER 38 

 
BESIDES THE COMMON MOTIVE FORCE OF THE SUN, THE PLANETS ARE 

ENDOWED WITH AN INHERENT FORCE, AND THE MOTION OF EACH OF THEM IS 
COMPOUNDED OF THE TWO CAUSES 

 
Since the Sun’s power is uniform, why do planets circle it eccentrically? In this chapter, 
Kepler is wondering about that question. What is the natural cause of the eccentricity of the 
planetary orbits? He suggests that the reason for their eccentricity is that they are at varying 
distances from the Sun, and therefore they encounter different intensities of its power, or its 
“immaterial species,” which are moving around it whirlpool-style. The nearer they are to the 
Sun, the more intensely are they subject to this sideways influence, and the faster they move 
in longitude. The further they are from the Sun, the less intensely are they subject to the 
same influence, and the slower they move. 
 But why is a planet at varying distances from the Sun? He supposes this is to some 
extent because of the Sun, but also to some extent because each planet has its own “motive 
power” or “vis insita.” He compares the Sun’s influence to a torrent of water, and the 
planet’s “vis insita” or inherent force to a rudder or oar which it might use to resist the 
simple flow of the solar species and thereby bring itself now closer to, now further from, the 
Sun. So there is some tendency in the planets to reciprocate, to move back and forth, along 
the line joining them to the Sun. 
 This idea of a ferryman, a pilot in a ship, a steersman (cf. “gubernator”) suggests that 
the planet might have a mind of its own, or is self-directive. Certainly it was the view of the 
ancients, such as Plato and Aristotle, that the heavenly bodies have intelligence and self-
directed motion. While Kepler will consider this view, in the end he will reject it. 
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CHAPTER 39 

 
BY WHAT PATH AND BY WHAT MEANS DO THE POWERS SEATED IN THE PLANETS 

NEED TO MOVE THEM IN ORDER TO PRODUCE A PLANETARY ORBIT (THROUGH 
THE AETHEREAL AIR) THAT IS CIRCULAR, AS IT IS COMMONLY THOUGHT TO BE 

 
In this chapter, Kepler lays down six physical axioms which he says are “of great certainty.” 
They are the following: 
 
1. A planet is sluggish, and inclined to rest. 
 
2. A planet is moved in longitude by the Sun’s power. 
 
3. If a planet were a constant distance from the Sun, then it would move in a circle.  
(This sounds almost like a tautology! But that is not quite so. First, the predicate adds to the 
subject that the orbit is in one plane, not some wild line on a sphere. Second, he means that 
there is a cause moving the planet in a circle, namely the Sun’s spinning and its whirling 
immaterial species, and this cause does not draw the planets in toward the Sun, nor move 
them away from it. The planet’s varying solar distances are therefore due mainly to some 
other cause, namely the planet’s own inherent force.) 
 
4. If the same planet orbits the Sun first at distance (or radius) A, then at radius B, then the 
periodic times will be as the squares on those radii. 
 
(He seems to be thinking as follows. The further out you are, the greater the circumference 
of your orbit, directly as the radii. But also, the further out you are, the slower your speed, 
directly as the radii, as he said before. Hence the further out you are, the longer your period, 
as the squares of the radii. This rule, as stated here, is not quite correct, and is contrary to his 
own Third Law of planetary motion, namely that the periodic times of planets in different 
orbits are not as the squares of the radii, but rather the squares of the periods are as the cubes 
on the mean radii. But apparently he arrived at his Third Law of planetary motion from 
beginning with imperfect thoughts such as this one.) 
 
5. The power of the planet is not enough to make it move in longitude or to make circles, 
“Since it lacks feet, wings, and feathers by which it might press upon the aethereal air.” 
(William H. Donahue translation.) 
 
6. The planet approaches and recedes from the Sun by the power which is proper to the 
planet. (This is half true, since it is the weight of the planet together with the inertia of its 
mass which is responsible for its orbit.) 
 
 
Now, adopting these physical axioms, Kepler wants to begin looking at what geometrical 
figures they might trace out in our understanding of any particular planetary orbit. 
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It is at this point that Kepler rather surprisingly re-introduces the idea of an EPICYCLE. But 
he is re-introducing it basically to destroy it. His main point seems to be this: IF there were 
solid orbs, then the planet would have a physical reason to rotate about the center of that 
solid, and hence about the center of the epicycle. BUT THERE ARE NO SOLID ORBS, and 
therefore all the points become imaginary, “incorporeal,” and we cannot think of any 
physical causes for motion around them. 
 
But Kepler will continue to talk about planetary epicycles all the way to the end of the book, 
even while establishing that the planets move on perfect ellipses, and even after showing that 
epicycles are physically absurd notions. This is because they are useful devices for 
calculating planetary solar distances. 
 
Way back in Ch. 2 (which we skipped over), Kepler introduced a certain epicyclic 
hypothesis. In this hypothesis, ED, the radius of the epicycle with center E, is always parallel 
to itself in an opposite-direction epicycle, and hence moves around E with the same speed 
(though in the opposite direction) with which its epicycle moves around S (the Sun)—and, 
by the way, since that speed is non-uniform around S, so too the planet (whose line to E is 
always parallel to itself) moves around N non-uniformly, and so there is an equant-point 
inside the epicycle itself (which is why Kepler says, earlier in the book, that the solar theory 
is built into every planetary theory; the epicycle, for an outer planet, is just a replica of 
Earth’s orbit). The epicycle’s radius, DE, 
is equal to SC, the eccentricity. He 
proves this epicyclic hypothesis is 
equivalent to what I have called the 
CRUDE hypothesis, the simple eccentric 
orbit (the solid line), but we can see it 
right here for ourselves. It is just like 
Ptolemy’s proof of the equivalence of the 
two solar hypotheses (simple eccentric or 
concentric deferent with an epicycle 
having a radius equal to the eccentricity, 
etc.). Just keep DE parallel to itself, E 
always on the dotted deferent, and the 
planet will trace out the solid orbit. 
 
Kepler’s point here is that this epicycle, 
while GEOMETRICALLY equivalent to the CRUDE hypothesis, is NOT PHYSICALLY 
EQUIVALENT. It is in fact physically absurd. This observation brings the specific benefit of 
destroying epicycles for good (except as calculation tools, in which form they arise again in 
Ch. 56), and also the more general benefit of teaching us that geometrical equivalence does 
not mean EQUAL PLAUSIBILITY. When we get the geometry and the physics to work 
together, THEN we are on the path to truth! 
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An epicycle was one way to explain why a planet was different distances from the Sun at 
different times. The planet sat on a solid crystalline sphere which rotated, and hence brought 
the planet now closer to, now further from, the Sun. But if we do away with such spheres, 
how are we to understand the physics underlying the planet’s variable distance from the Sun? 
 Kepler’s idea is that the planet “reciprocates” or moves back and forth along the line 
joining it to the Sun, and does so by its own power, and in accord with a rule that is 
equivalent to motion on an epicycle. This is why he keeps bringing epicycles back into the 
picture, although he does not believe in them as physical things (i.e. actual rotating spheres). 
 At the moment, however, he is examining the physical 
viability of epicycles. He is imagining the planetary “mind” cutting 
off what it deems to be appropriate solar distances like ai, and using 
these to determine where it should be on its epicycle. “Ah!” the 
planet might say to itself, “I should be at q on my epicycle now, 
since ai = aq.” (This is why he brings up RECIPROCATION. The 
“relevant point” on AN keeps shifting back and forth in accord with 
distances from the Sun.) 
 
But if insist on all this, he says we get FIVE ABSURDITIES: 
 
ABSURDITY 1: The planet is making motion on its epicycle by its 
own power—and this is contrary to Axiom 5, since it lacks feet, 
wings, etc. Since it lacks moving parts, no physical cause can be 
assigned for such a motion around some invisible and intangible 
and inactive point b. 
 
ABSURDITY 2: Returning to our other diagram, D moves about 
C with the same angular velocity as E moves about S, as we saw. 
Therefore the motion of D about C and the motion of E about S 
intensify and remit at the same times (note C is the geometric 
center, not the equant, so the epicycle does not move uniformly 
around C, nor does the planet). Therefore, since D speeds up and 
slows down around the Sun, depending on its distance, it must be 
that E speeds up and slows down around S even though it is 
always the same distance from the Sun. But E should move with 
uniform circular speed around S if it is always the same distance 
away from the Sun, since at a fixed distance from the Sun, the 
Sun’s immaterial species moves at a fixed rate or with a fixed 
strength. 
 
ABSURDITY 3: The Sun’s motive rays move faster than the planets (see Ch. 34), yet we are 
now supposed to imagine a power-ray from the Sun, SE, always through the epicycle’s 
center. Nor can we say the Sun’s power-rays move through the center of the epicycle, E, 
faster than E itself orbits, since E cannot be a “sluggish point”, being incorporeal. The Sun, 
in pushing the center of the epicycle, is pushing a ghost. 
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ABSURDITY 4: SE must speed up and slow down around S, since CD does around C, and 
SEDC is always a parallelogram, as we saw. And yet E is a constant distance from the Sun 
(this is very similar to absurdity 2). 
 
ABSURDITY 5: We have to think the planet orbits about an imaginary point E and in the 
opposite direction of the longitudinal motion. How can physics explain that? 
 
FORGET THE EPICYCLE, AND STILL . . . 
 
Kepler now imagines someone saying “Forget the epicycle! That is not the cause of the 
epicycle-like movement. The cause is instead the mind of the planet, which directs its own 
motion by a very simple rule. Just let ED stay always parallel, and let E stay equidistant from 
S.” But on that supposition, he says, we still have absurdities: 
 
ABSURDITY 1: Even if a planet has a mind, how does it keep track of point E, where 
nothing is? Even if calculated from the location of C, C is also nothing but a thought-
product. (And we have to give it a mind, because there is no physical cause at E for the 
motion of the planet around it.) 
 
ABSURDITY 2: It is silly to think the planets know the tables of the planetary motions. 
 
ABSURDITY 3: The infinite is unknowable. 
 The continuous change in the proper distances of the planet, such as SD, would mean 
that the planet must consider an infinity of such distances in any length of time. 
 
Kepler does not think that it is possible to account for this motion of the planet by a mind or 
by any “vis insita.” Instead, the motion of the planet which produces its various distances 
from the Sun must somehow result from the concerted action of the Sun and planet. 
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KEPLER 
 

DAY 42 
 
 

Chapter 40 
 

AN IMPERFECT METHOD FOR COMPUTING THE EQUATIONS FROM THE 
PHYSICAL HYPOTHESIS, WHICH NONETHELESS SUFFICES FOR THE THEORY 

OF THE SUN OR EARTH 
 
 
 
 
KEPLER’S THREE LAWS OF PLANETARY MOTION. 
 
Kepler is famous for having discovered the three laws of planetary motion. All three are of 
great significance for astrophysics, and Newton reasons from all three of them to the law of 
universal gravitation. These laws are as follows: 
 
Law 1. Each planet moves on an ellipse which has the Sun at one focus. 
 
Law 2. The line from each planet to the Sun sweeps out equal areas in equal times. 
 
Law 3. Comparing any two planetary orbits, the squares of their periods are as the cubes of 

their mean distances from the Sun. 
 
Law 1 will be established by the end of the Astronomia Nova––at any rate, in the case of 
Mars (and it may be done similarly with the remaining planets). Law 3 is stated in Kepler’s 
Epitome of Copernican Astronomy 4.3, and in other places besides, but we will not concern 
ourselves with establishing that particular law. But in Chapter 40 of Astronomia Nova, which 
we are now considering, Kepler establishes Law 2, although almost as an aside—it is 
approached as a means for computing “the physical part of the equation,” i.e. the angle 
which is traversed around the equant-point in a given time. Kepler’s second law is very 
significant, however, not only as a link to Newton’s physics of centripetal forces, but also as 
a break with past thinkers. The ancient astronomers believed in some kind of uniformity of 
motion underlying the apparent irregularity in the movements of the planets. Modern 
astrophysicists agree with that general premise. But the ancient astronomers sought this 
regularity in perfectly uniform circular motion, whereas for modern astrophysics that would 
be a very special and particular case. More often, the celestial bodies do not sweep out equal 
ANGLES in equal times around any point at all, but instead they sweep out equal AREAS in 
equal times around the center of the centripetal force producing their orbits. Uniform angular 
velocity has been replaced by uniform areal velocity. 
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WHAT IS KEPLER DOING? 
 
In the present chapter, Kepler is concerned principally with 
Earth’s orbit. 
 The SUMMARY for Ch. 40 makes plain what he is 
aiming at: “A method by which the physical part of the 
equation, that is, the elapsed time of a planet over any arc of the 
eccentric, may be found from the distances of the points of its 
arc from the Sun.” The title reflects this, too. 
 Why does he want this? If we supply Q as the equant-
point in Kepler’s diagram, then ∠BGQ is the “physical part of 
the equation,” and ∠GQC is a measure of the TIME. This will 
tell us where a planet should be at a given time, in longitude. 
What he wants to do is show that his physical theory produces 
consequences for the TIME, that is, it dictates––and dictates 
correctly––what the angles about Q should be at any given time. 
 So he needs to reason synthetically, to reason forward, from causes to effects, 
beginning from his physical hypotheses, to arrive at a way of calculating, from these, what 
the angles are around Q (or what the angles AGB, BGQ are, which will be as good as GQC). 
 Given the time that has elapsed since the planet was at C, we would have the angle 
CQG, and given the eccentricities (i.e. the values of AB and BQ in terms of the orbital 
radius) we could easily calculate, by trigonometric methods, the values of the angles BGQ 
and AGB. But that is not all Kepler is doing here. 
 
 
THE STARTING POINT 
 In Ch. 32, Kepler showed that the speeds at aphelion and perihelion are inversely as 
the distances from the Sun. He claims to have shown also that this rule is very nearly true 
throughout the orbit (the real rule for the speeds at two locations on the orbit is that they are 
inversely as the perpendiculars dropped from the Sun to the tangents at those two points). 
 Since for Kepler the speeds are inversely as the distances from the Sun, and since the 
speeds are also inversely as the times they take to go an equal linear distance (the greater the 
uniform speed, the shorter the time for it to go a given distance), therefore the times are 
directly as the distances from the Sun. 
 That reasoning gets us from physical ideas to the result that the times are as the solar 
distances. But the problem with the distances is that there is an infinity of them in the 
eccentric orbit, and no time is spent at any one of those distances from the Sun. 
 So how do we find the time spent in any given arc of the eccentric orbit? We “ADD 
UP ALL THE DISTANCES” in very short, very many, arcs. The total distance, or rather 
AREA, will be proportional to the time spent sweeping out that area. This is the way we 
stumble into Kepler’s Second Law. He is still so convinced of the importance of an equant, 
that he brushes past the second law as a pure means to an end! Really, it is the only thing that 
makes any physical sense (as Newton will later show), and which gives us a brand new way 
of clocking the motion of the planet. We now have an area-clock, as opposed to an angle-
clock. 
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FIRST [HINTED] ARGUMENT THAT THE AREA IS PROPORTIONAL TO THE TIME 
(i.e. THE 2nd LAW), FOR THE SAKE OF CALCULATING, FROM PHYSICAL CAUSES, 
“THE EQUATIONS,” i.e. THE ANGLES AGB etc. 
 Kepler hints at an argument where he says it “seemed to me ... that 
by computing the area CAH or CAE I would have the sum of the infinite 
distances in CH or CE.” 
 First, without calculus (but in anticipation of it), we assume 
something which is strictly speaking impossible yet somehow intuitively 
persuasive: Area GAC is composed of an infinitude of distances drawn 
from A to arc GC. We assume that the area of the circular sector GAC is 
somehow the sum of an infinity of lines. And area HAG is likewise 
composed of an infinity of distances drawn from A to arc HG. 
 
 
 
Thus  All the distances in arc HG  =  Area HAG 
  All the distances in arc GC     Area GAC 
 
 
 
But he said before (not quite correctly) that the distances from the 
Sun are inversely as the speeds of the planet when it is at those 
distances; but times are also inversely as speeds. Hence the times, or 
delays, of the planet (at points? well, at very tiny arcs!) are directly 
as the distances. So, since the times of the planet in each tiny point-
arc are as the distances from the Sun (which distances it has during 
its time in each teensy arc), hence 
 
 
  All the times in little arcs of HG  =  Area HAG 
  All the times in little arcs of GC    Area GAC 
 
 
i.e.  Total time in arc HG  =  Area HAG 
  Total time in arc GC    Area GAC 
 
 
And that is Kepler’s 2nd Law, i.e. that the areas swept out around A, the Sun, are as the times. 
 
 
 Kepler SUGGESTS this argument, but then seems to give ANOTHER ARGUMENT 
a little further on! (More on this in a moment.) 
ONWARD TO THE ANGLES. . .  
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 Kepler is interested in getting from this new time-rule to 
the rule for angles around the equant, i.e. a way of calculating 
them. He says “Thus the area CGA becomes a measure of the 
elapsed time or mean anomaly [movement] corresponding to the 
arc of the eccentric CG.” That is, the planet is sweeping out 
equal AREAS in equal times around A just as it sweeps out equal 
ANGLES in equal times around Q, the equant. So the AREAS 
around A will be proportional to the ANGLES around Q. 
 There is an occasion of confusion in Kepler’s diagram—
the arcs and angles around B are equal, but B is not the equant-
point, and so the times of these equal arcs and angles are not 
equal. So why does he draw them? This is his SECOND 
ARGUMENT, or rather his first and only explicit one, and which 
is easily missed since it is so imperfectly expressed. It goes like this: All the sectors around 
B, standing on equal arcs, are equal, and they are as the angles around B. These are NOT 
swept out in equal times, since that would be true of the angles around Q. But if areas around 
B are as angles around B, that suggests that where angles are as times around one point (Q), 
perhaps areas are as times around another point (A). We are already expecting A to be a 
significant center of uniformity somehow. Also, because of the equant, it takes the planet 
more than half the time of the semicircle to cover half the semicircle, i.e. to complete arc 
CGHE. But look! The AREA standing on that arc from A is also greater than half the whole 
area of the semicircle! By a few suggestive hints like this, we draw the general conclusion 
that A is the right point around which the planet will sweep out areas proportional to times: 
“Therefore . . . as the area CDE is to half the periodic time . . . so are the areas CAG, CAH to 
the elapsed times on CG and CH.” 
 
 Now the sector CGA has two components: 
 
 Area CGA = Sector CGB + rBGA 
 
so rBGA = Area CAG – Sector CGB 
 
 But area CAG is proportional to the TIME, and therefore 
to the mean anomaly (i.e. to angular motion around the equant-
point on the eccentric equant-circle), i.e. to ∠CQG. 
 And area CGB is proportional to the eccentric anomaly, 
i.e. to ∠CBG (sectors are as the angles, in a circle). 
 Hence the remainder, rBGA, must be proportional to the 
difference between the angles CQG and CBG, i.e. to angle BGQ, 
or “the physical part of the equation.” 
 
 So if we know the triangle BGA, i.e. its angles and its 
sides and hence also its area, then we know both (1) the “optical 
part” of the equation, i.e. ∠AGB, and also the “physical part” of 
the equation, i.e. ∠BGQ (since the area of rBGA is proportional 
to that angle). 
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 Hence Kepler concludes: “Thus the knowledge of this one triangle [i.e. rBGA] 
provides both parts of the equation” for the movement GAC. 
 
 And that concludes Kepler’s correlation of his physical theory with the angular 
measurement of planetary motion. 
 
 
AFTERNOTE. This is a perfect example of DISCOVERY-MODE thinking. It is finding the 
true from the true-enough-but-still-false! Look how many false things go into finding this 
true thing (the 2nd Law): 
 1. A false orbit (circle). 
 2. A false rule for the velocities (as inverses of distances from the Sun). 
 3. A false motive (to discover how to find angles around the equant, a point we have 
no general reason to believe exists). 
 4. All the false stuff about composing things of indivisibles. (Genuine methods of 
calculus do not require us to compose continuous things out of an infinity of indivisibles.) 
 
NOTE: Kepler’s 3rd Law, that the cubes of the major axes of planetary orbits are in the same 
ratio as the squares of the orbital periods, can be verified just by plugging in the numbers: 
 
   Period in Days  Mean Solar Distance in Miles 
 
Mercury  88    36,000,000 
Venus   225    67,200,000 
Earth   365    92,900,000 
Mars   687    141,500,000 
Jupiter   4333    483,300,000 
Saturn   10759    885,200,000 
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KEPLER 
 

DAY 43 
 

THE DESTRUCTION OF THE CIRCLE; 
FINDING SOLAR DISTANCES FOR MARS 

 
Chapters 44, 51 

 
 
 
 

CHAPTER 44 
 

THE PATH OF THE PLANET IS NOT A CIRCLE! 
NOT EVEN WITH RESPECT TO THE FIRST INEQUALITY ALONE 

EVEN IF YOU MENTALLY REMOVE THE BRAHEAN AND PTOLEMAIC COMPLEX 
OF SPIRALS RESULTING FROM THE SECOND INEQUALITY IN THOSE TWO 

AUTHORS 
 
 
This is, at long last, the banishment of the circle as an adequate model for the orbit of Mars. 
Recall the C.W.A.B.E. hypothesis, the very simple hypothesis in which the orbit of Mars 
simply is a perfect Circle, With A Bisected Eccentricity (so that AG = GT, as required by 
certain observations of Ptolemy). We will now show that this circle cannot be the true orbit 
of Mars. But we don’t, quite yet, see that the orbit is an ellipse. Kepler goes back to the 
drawing board, without preconceived ideas as to the shape of the path, and he goes through a 
false oval hypothesis (but let’s not spend much energy on that!). 
 So the essential thing, here, is a negative result: NOT a circle. 
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He gets there like this: 
 
 
FIRST ARGUMENT AGAINST THE CIRCLE (FROM LONGITUDES) 
 
Take the planet in positions K, H, Q at known times, thus giving the angle from aphelion E 
(the position of the line of apsides EGAD was previously found with great accuracy). 
 
Since we know the time, we also know the angle ETK (if T is the equant). 
Hence  ∠KTG = 180° – ∠ETK  [so ∠KTG is known] 
but  KG is known    [radius of the eccentric] 
and  GT is known    [= AG, bisected eccentricity] 
and so, in rKTG, we know two sides and a non-included angle, and so, by the Law of 
Sines: 
  KG : sin(∠KTG) = GT : sin(∠GKT) 
 
so  ∠GKT is known 
thus  ∠KGT = 180° – ∠GKT – ∠KTG is given 
so  ∠KGA = 180° – ∠KGT is given 
 
so, by the Law of Cosines: 
 
  KA2 = KG2 + AG2 – 2KG·AG(cos∠KGA) 
 
hence  KA is given 
 
Now repeat for HA and QA, assuming that KG = HG = QG = radius of eccentric orbit. 
The resulting values of KA, HA, QA are noticeably off from other values found 
independently by more direct observations, namely “acronychal” observations, i.e. at solar 
opposition, when Earth is on the lines AK, AH, AQ, and so the longitudes of these lines are 
directly observed. 
 
 
There are several assumptions, still, in this line of reasoning. We assume that there is a point 
around which the planet sweeps out equal angles in equal times—which might be false, and 
hence the falsehoods following from the reasoning above might derive from that assumption, 
rather than the assumption of a perfectly circular orbit. But he will return to this and shred 
the circle many times, independently of such assumptions. 
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SECOND ARGUMENT AGAINST THE CIRCLE (FROM TIMES) 
 
His second argument to the same effect is from the times. 
 
If the orbit is a circle, then 
 
  Time in arc BM : Time in KH = Area BMA : Area KHA 
 
If the orbit is oval on the line of apsides, then 
  
  Time in arc BG : Time in EL = Area BGA : Area ELA 
 
Now  Area BGA : Area ELA > Area BMA : Area KHA 
 
Therefore, if the orbit were an oval, the planet would spend more of its time in ∠BAG and 
less in ∠EAL than it does on the hypothesis of a circular orbit, and the observations bear this 
out. So the time is not distributed as in the circle, but more of it is spent close to B and D 
than would be the case in the circle. 
 
Here Kepler observes that the times are accumulated at aphelion and perihelion “in much the 
same manner as if one were to squeeze A FAT-BELLIED SAUSAGE at its middle,” then 
one would squash the ground meat from the belly out to the extremes, above and below the 
hand. That doesn’t seem to be an image of the orbit itself, i.e. the path, but of the way the 
times are distributed, or would be distributed. 
 
Note that this argument against the circularity of the orbit of Mars is independent of any 
assumption about an equant! It is based on his Second Law of Planetary Motion, which he 
discovered through physical considerations. 
 
 
In Chapter 45 (which we will skip past) he pursues a BLIND ALLEY, i.e. a quasi-epicyclic 
theory, producing an ovoid path. 
 
In Chapter 46 he finds another way to generate this hypothetical egg-shaped orbit. It has a 
sharp end and a blunt end, unlike an ellipse. But this eventually is rejected. 
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CHAPTER 51 
 

DISTANCES OF MARS FROM THE SUN ARE EXPLORED AND COMPARED, AT AN 
EQUAL DISTANCE FROM APHELION ON EITHER SEMICIRCLE; AND AT THE SAME 

TIME THE TRUSTWORTHINESS OF THE VICARIOUS HYPOTHESIS IS EXPLORED 
 
 
Kepler says Mars cannot be restrained by the oval 
(egg-shaped) orbit, so he calculates many more 
distances of Mars, without the presumption of a 
circular orbit. 
 
He gets the true position of the line OM, where O 
is the Sun and M is Mars, from an acronychal 
observation, i.e. when Earth is right between O 
and M at B. Then he waits one full cycle of 
Martian motion, and he knows that Mars is again 
there on its orbit, at M, even if we don’t observe 
it there, but are somewhere else on our orbit this time, such as A. 
 
This eliminates the assumption of an equant-point, since we are waiting through a full cycle, 
and not worrying about how angles are distributed around some point. 
 
 
GIVEN: We were once on OM, at B, and with an acronychal observation saw the true 
longitude of Mars, i.e. at R. One full Martian cycle later (to keep things simple), when we 
know Mars is in fact again exactly at point M, Earth is now at A, and we observe the planet 
at T in the zodiac. 
 
 
FIND: OM, the distance of Mars from the Sun. 
 
R is a definite star or place in the zodiac. So is T. And we observed Mars first at R, later at T. 
If we draw Ar parallel to MR, then they point to the same fixed star. So, not only is ∠rAT 
equal to ∠RMT, but r and R are the same point. So, when at A we observe Mars, which 
gives us the line of sight AT. And we also observe star R in the zodiac, where Mars appeared 
to us when we observed it from B, which gives us the line of sight Ar. Therefore ∠rAT is 
known and observed, i.e. ∠RMT, i.e. ∠AMO. 
 
so ∠AMO is known 
but ∠MAO is also known, since that is the angle between the Sun and Mars, with Earth 

at the vertex. 
and OA is known (in units of Earth’s mean distance from the Sun, given by the date and 

our solar theory, or theory of the Earth’s movement) 
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But the Law of Sines says that 
 
 sin(∠AMO) : OA = sin(∠OAM) : OM 
 
And we know all of these terms except OM. 
Thus we find OM, the Sun-Mars distance. 
 
Q.E.I. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
Amassing the values of OM at various times will give us the pieces of a giant puzzle from 
which to construct the true shape of the orbit of Mars. 
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KEPLER 
 

DAY 44 
 

 
HUNTING FOR A WAY TO CONSTRUCT 

ALL THE TRUE SOLAR DISTANCES OF MARS 
 

Chapter 56 
  
 
In Chapter 55, Kepler shows that the “infallible observations” show both that the orbit is too 
skinny to be a circle, but also too fat to be the oval which he conceived in Ch. 45 (which we 
have skipped past). So it must be that the true orbit of Mars “takes a middle course” between 
the too-fat circle and the too-skinny oval. 
 Here in Chapter 56, Kepler hits upon a way to construct all the correct solar distances 
for Mars. This step is crucial, since it allows us to define the true orbit as the locus of points 
which all follow from the same construction, thus reducing the question of the shape of the 
orbit to a matter of pure geometry. Kepler had to find something common to all the true solar 
distances which Mars observes throughout its orbit in order to determine the shape of that 
orbit. This chapter does that for us. 
 In Ch. 55, Kepler determined that the orbit of Mars is between the too-skinny oval 
and the too-fat circle—it is somewhere in the “lunule” which is the difference between these 
extremes. So he begins to hunt for a rule to determine by how much he has to “pull in” the 
orbit from the circle in order to make it correct. If we let CD be the line of apsides of the 
Martian orbit, B the midpoint, CED the circle on diameter CD which we know is close to the 
Martian orbit but a tad too fat, A the Sun, Kepler is asking himself this question: If AE is too 
long a solar distance to locate Mars correctly along the perpendicular BE, then what is the 
right solar distance? If Mars is actually at P instead of E (along BE drawn perpendicular to 
CD), what is the rule for determining that distance AP? He is particularly interested in 
examining this one case where BE is drawn at right angles from the midpoint, because that is 
where there is the greatest difference between the circular path and the true Martian path. 
 
 

“The breadth of the lunule of ch. 46 above, born to us 
out of the opinion of chapter 45 which instructed us to 
cut it off from the semicircle—this breadth, I say, was 
found to be 858 units, of which the semidiameter of the 
circle is 100,000. But then, by two arguments . . . I 
concluded that the breadth of the lunule is to be taken as 
only half that, namely 429, or more correctly, 432, and 
in units of which the semidiameter of Mars is 152,350, 
nearly 660 . . .” (Ch. 56, William H. Donahue 
translation) 
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Kepler, like Ptolemy, will occasionally switch units on us and make proportional 
adjustments. In Ch. 42, he determined that the eccentricity, AB, for the Martian orbit, is 
14,140 where the radius of Mars’s orbit is 152,640 (and the radius of Earth’s orbit is 
100,000). 
 QUESTION: Why does Kepler here say “or more correctly, 432”? Because if EB is 
152,350 (the value he uses in this chapter), and the eccentricity AB is 14,140 (from Ch. 42), 
then, adjusting this so that EB is our new reference length, EB = 100,000, AB = 9281. Then 
if the Martian orbit intersects EB at P, where angle BEA is given as 5° 18’ (he calls this the 
“greatest optical equation”)1, and if we use his own technique which he is about to 
discover, i.e. if we assume that AP = EB = 100,000 (thus replacing the “secant” EA with the 
“radius” AP which is equal to EB, the radius), a couple uses of the Pythagorean Theorem 
easily prove that EP = 432. So then why does he say “429”? Because these are close enough 
that the number “429” at the end of the value of the secant for 5° 18’ made an impression on 
him. More on this to come. 
 

 
 
To keep things simple, let’s stick with one set of numbers: 
Let the circle which approximates the orbit of Mars, and 
which shares its major axis as its diameter (CD, the Martian 
line of apsides), have a radius of 100,000 (so BD = 100,000). 
Let A be the Sun, CLD is the “oval” hypothesis of Ch. 45. 
Then where BC = 100,000, EL = 858. That is the “breadth of 
the lunule.” But that breadth is too much, and would put 
Mars at L, whereas the Martian orbit actually passes through 
P, where EP is 429 (or, “more correctly,” 432). 
 
 
“I therefore began to think of the causes and the 

manner by which a lunule of such a breadth might be cut off.” 
 
 
He is looking for a rule, in other words; a way of constructing, from the circular path, little 
adjustments in order to “pull in” the orbit to the true orbit of Mars. 
 

“While I was anxiously turning this thought over in my mind, reflecting that 
absolutely nothing was accomplished by chapter 45, and consequently my 
triumph over Mars was futile, quite by chance I hit upon the secant of the 
angle 5° 18’, which is the measure of the greatest optical equation. And when 
I saw that this was 100,429, it was as if I were awakened from sleep to see a 

                                       
1 Actually, the greatest optical equation occurs, at least for the theoretical path, when EA is perpendicular to 
AB, as in Ptolemy’s “greatest anomalistic difference.” Nonetheless, Kepler seems to be talking about the case I 
am discussing here, when EB is perpendicular to AB, since the numbers work out, and since that does appear to 
be the simplest case. Perhaps he calls ∠AEB the “greatest optical equation” only because it is the optical 
equation which is a part of the greatest equation. That is, the total equation at point E, when BE is perpendicular 
to CD, seems to be the greatest angle, i.e. angle A-E-equant. 
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new light, and I began to reason thus. At the middle longitudes the lunule or 
shortening of the distances is greatest, and has the same magnitude as the 
excess of the secant of the greatest optical equation 100,429 over the radius 
100,000. Therefore, if the radius is substituted for the secant at the middle 
longitude, this accomplishes what the observations suggest. And, [using] the 
diagram [of] Ch. 40, I have concluded generally that if you use HR instead of 
HA, VR instead of VA, and substitute EB for EA, and so on for all of them, 
the effect on all the eccentric positions will be the same as what was done 
here at the middle longitudes.” (Ch.56, William H. Donahue translation) 

 
 
Mark that: “Quite by chance.” So we can’t keep chance out of the discovery process! 
 
What is Kepler talking about? What was his piece of luck? While trying to find a rule for 
determining the true “breadth of the lunule” (at all points) he ran across the secant of 5° 18’, 
which is 100,429 (if the radius of the circle is 100,000). Those last three digits caught 
Kepler’s eye: 429! That could not be by chance! 5° 18’ is the “measure of the greatest optical 
equation” AND “429” is the correct breadth of the lunule at that point! (Actually, it is 432, 
but these were close enough to get him thinking.) 
 
So the two numbers, 5° 18’, and 429, caught his eye, because these two numbers are paired 
in two ways: (1) as an angle and the last digits of its secant, (2) as the “measure of the 
greatest optical equation” in the Martian orbit and the correct breadth of the lunule at that 
point. 
 
The angle BPA is what he calls the “optical part of the equation,” since one of its sides lies 
along our line of sight to Mars, namely when we make an “acronychal observation”, i.e. 
during solar opposition, when Earth is along the line AP. 
 
Kepler already had determined the value of EP when EB is at right 
angles to CD, the line of apsides. He also already realized that EA 
is the secant of the “greatest optical equation,” since angle EBA is 
right. So what is new here? What is new is that 
 
 100429 – 429 = 100000 
 
Now that would all collapse onto one straight line, of course, and 
not form a triangle. But EP is not 429 exactly. It is 432 exactly. 
Hence, even if PA were exactly 100000, these three lines EP, PA, 
EA would not collapse into one straight line, but would leave us with a very flat triangle, 
where EP is 432, EA is the secant of that, or 100429, SO WHAT WOULD AP HAVE TO 
BE? Pretty close to 100,000! That is, pretty close to the radius of the circle on the line of 
apsides as diameter. Do a little trigonometry, and it turns out it is exactly 100,000. 
 
 Wow! Could that possibly be a general rule for constructing point P? Let us ask it this 
way: Of what general rule are lines AP and EB an instance? In the next portion of Chapter 
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56, Kepler will attempt to describe the general rule, and he will get it half right, as we will 
see in Day 45. 
 
 
QUICK VERIFICATION THAT SEC 5° 18’ = 100429. 
 
In our unit circle, let ∠ROT be 5° 18’, i.e. 5.3°. Then OL, the cosine of this angle, is 
.995724698. Draw in tangent TS, forming secant OS. 
 
Now OS : OT = OT : OL 
or OS : 1 = 1 : OL 
so OS = 1/OL = 1/.995724698 
so OS = 1.00429 
or OS = 100429, where OT = 100000. 
 
 
Or, again, looking in the diagram of the orbit, 
 
 cos∠E = EB/EA 
so sec∠E = EA/EB (the reciprocal of the cosine, as we just saw) 
so if EB = 1 
then EA = sec∠E 
 
So Kepler says EA is the wrong length for constructing the true 
distance to Mars. What we need is AP, which turns out to be 
equal to EB. “Therefore if the radius is substituted for the 
secant at the middle longitude, this accomplishes what the 
observations suggest.” 
 
 
 
 
 
 
 
QUICK VERIFICATION OF THE GEOMETRY IN THE ORBIT. 
 Let  EB = 152,350 (as Kepler says in this chapter) 
 Let  AB = 14,140 (Ch. 42) 
Or, adjusting 
 Let  EB = 100,000 
 so  AB = 9281. 
Now construct AP = EB = 100,000, 
and suppose ∠BEA = 5.3° 
 
Then EA = √(EB2 + AB2) = √(1000002 + 92812) = 100429 
and BP = √(AP2 – AB2) = √(1000002 – 92812) = 99568 
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so EP = EB – BP = 100,000 – 99568 = 432 
 
so EP = 432, just like Kepler says. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C

B

A

E P

D



 115 
 

KEPLER 
 

DAY 45 
 

 
CONSTRUCTING THE SOLAR DISTANCES BY THE EPICYCLE; 

KEPLER GETS THE CONSTRUCTION RULE WRONG 
 

Chapter 56 (Continued) 
 
 
 
 
In the remainder of the drama of Chapter 56, Kepler brings back the equivalent epicycle of 
Ch. 39 used to construct points on the orbit. He is saying that what we have just discovered, 
our new rule, tells us that in the epicyclic equivalent we should use ak as a solar distance 
instead of ad (or ai), and am instead of ae. 
 
This may not seem very important. It might even seem like a 
weird sidetrack into which the mind of Kepler keeps 
slipping, and to which he returns now in passing. But it keeps 
coming back, all the way to the end of the book! We will 
look into this more when we come to Ch. 58, where the 
“puff-cheeked orbit,” his last dead-end, comes up, and where 
this epicycle comes up again. 
 
The construction is this: 
 
Let CGHEJKD be a perfect circle on the Martian line of 
apsides CD as its diameter. So this is the circle formerly believed 
to be the Martian orbit. A is the Sun, B is the center of the circle, 
and the points on the circle are taken at equal arcs. 
 Let the epicycle have a radius bd which is equal to the 
eccentricity AB. Let the deferent be a circle equal to CGHEJKD, 
but with A as center. Let Mars move on the epicycle in the 
direction opposed to that in which the epicycle moves on the 
deferent, and with the line bd (joining the epicyclic center to Mars 
itself) always parallel to the line of apsides. (This will result from 
making the pace of the planet on the epicycle match that of the 
epicycle about the deferent, which means there must be an equant-
point inside the epicycle itself, since the epicycle does not sweep 
out equal angles in equal times around the center of the deferent.) 
We discussed this construction before, back in Day 41, where we 
saw that this epicyclic motion is exactly equivalent to Mars 
moving on circle CGHEJKD itself. 
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 Recall that the way Kepler imagined the planet “thinking,” was like this: “I have to 
describe arcs on my epicycle that are always similar to the arcs which my epicycle is 
describing on the deferent. For instance, if the epicycle is at H, so that it has gone through 
arc CH, then I must be at q, such that arc gq is similar to CH. That is the only way I can 
produce the circular path which will make Kepler happy in Ch. 39. But, because he is 
thinking like a physicist, and is trying to give my epicyclic motion a physical significance, 
Kepler insists that I determine my rate on the epicycle by ‘reciprocating’ through various 
distances on the very line of apsides of my epicycle itself. I am supposed to ‘feel’ the distance 
which I ought to have from the Sun by its different tugs on my epicycle. So if I feel the tug on 
it of such an intensity which corresponds to point i on my epicycle’s diameter, that tells me I 
should be at q on my epicycle, where aq = ai. Is this weird? Of course it is. But Kepler’s 
mind is inscrutable.” 
 All right, but the circular path is wrong, as we have seen. So now 
we need a new way for the thoughtful planet to construct its proper 
locations, and generate the right orbit, rather than the circular one. We 
need the rule, in other words, that will be equivalent to the new “replace-
the-secant-with-the-radius” rule. 
 Formerly, we would have said that when the epicycle is at H, then 
Mars should be at q, where arc gq is similar to arc CH, and aq is equal to 
AH. In fact, aq is AH when we place the epicycle in the diagram of the 
supposed orbit CGHEJKD. 
 But that lands us right on the circle, which is not the true orbit. So 
instead, we don’t want aq, but something slightly smaller. What is it? It is 
ak. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Let’s see this new equivalence in a single example, and an easy one: the case where 
the planet is at P, along EB, where EB is perpendicular to CD the line of apsides. This is the 
case we were talking about in Day 44, with the secant value of AE being equal to 100,429 
and so on. 
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 Let T be the equant-point. Circle CD is the old theoretical orbit, B its center, A the 
Sun. The dotted line is the deferent, center A, equal to circle CD. We let the planet go to E 
such that ∠EBC = 90°, to examine our special case. From E we draw a line ER parallel to 
CD and equal to eccentricity AB. Hence R is the center of the epicycle. Joining TR through 
to S on the epicycle, we see that since the epicycle has gone through ∠CTR in regular 
motion, the star must have gone through an equal angle, ∠SRE, since it was up at apogee at 
C, but in the opposite direction. And since EBC is a right angle, ABER is a rectangle. Draw a 
circle of center A, radius AE, intersecting the line from the Sun through R (i.e. line ARG) at 
point N. According to the old “reciprocation” rule, then, when the epicycle is at R, the planet 
is supposed to “sense” the propriety of length AN, and from that calculate or react 
appropriately, so that it is at E on its epicycle, with AE = AN. 

 

 
 

 
 
But the planet is not really at E, but at P, we now know. So instead of taking 
 
 AN = AE = secant ∠AEB = secant ∠EAR 
 
we should instead take 
 
 AR = EB = AP. 
 
So instead of deciding on the right place for it to be by taking the secant, AE, the planetary 
mind instead considers that it should use the radius, EB, or AR, since that is what AP, the 
true solar distance it adopts, is equal to. Now this is a special case, where AR happens to 
equal the radius of the eccentric, EB, and it is also at right angles to the line of apsides. 
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Those conditions will not generally obtain for other points on the old orbit, and so it is not 
entirely clear of what general rule the present construction is an instance.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In this chapter, Kepler in fact gets the general rule WRONG! What he sees is this: P, the 
point which is truly on the orbit of Mars, is the intersection of AP and EB, and also AP is 
equal to EB. But away from this special place on the orbit, what are the more general 
descriptions of lines AP and EB that matter? 
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Kepler considers other points on the original theoretical orbit and asks what general rule of 
construction, beginning with those, can we infer from the special case we have discovered. 
Suppose R is a random point on the old theoretical circular orbit. Join RB, RA, and complete 
a right triangle on AR as hypotenuse by extending RB to K, where the line drawn from A at 
right angles to RB meets it. So now we have the following analogs: 
Special case considered above  Case considered now 
 
E      R 
rEBA      rRKA 
EA      RA 
EB      RK 
AP      ? 
 
 
Of what general rule was the construction of point P a 
special and simple instance? That is the question. Do we, 
for example, instead of taking AR as the right solar distance 
to Mars, take RK instead? That seems very plausible, given 
their analogy to EA and EB. Then do we make a circle 
around center A with radius RK? Again, that seems very 
plausible, since that is what we did with EB, which is 
analogous to RK. But now what? Suppose this circle we 
have drawn intersects the line RK at T, and the 
perpendicular RL (drawn to the line of apsides) at G. Which 
one of these points should be considered a point on the true 
orbit of Mars? Either one could make a claim to being 
analogous to point P in the special case we considered. 
 T is like P because it lies on the side of the right 
triangle, RK, which was analogous to EB, just as P lies on EB. So we should expect the true 
point of the orbit once again to lie on RK, the side of the right triangle which gives us the 
correct distance. 
 G is like P because it lies on the perpendicular from R to the line of apsides, just as P 
did in the special case we considered. 
 So which is it? 
 Here in Chapter 56, Kepler assumes that it is T. But in fact he is mistaken—it is G, 
and he corrects himself in Chapter 58. 
 And so that will give us a general rule for constructing points on the true orbit of 
Mars. For any point R on the circle about the line of apsides, we can construct a 
corresponding correct point on the true orbit of Mars thus: 
 
 
• We drop RL at right angles to the line of apsides CD 
• We join RB, RA, and complete the right triangle RKA, where RK passes through B. 
• We draw a circle with center A, radius equal to KR. 
• Where this circle intersects RL will be a point on the true orbit of Mars, as all the 
observations of both Brahe and Kepler confirm. 
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Here is a diagram illustrating other such points on the true orbit. The orbit itself is the dotted 
line, “squished in” from the circle, as it should be. The rule just given explains exactly how 
much the orbit should be squished. (The diagram does not represent the amount of squish 
precisely—we will present a scale diagram later to give a sense of just how “squished” the 
Martian orbit is.) 
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KEPLER 
 

DAY 46 
 
 
 

MAGNETISM THE MOST LIKELY CAUSE OF PLANETARY MOTION; 
HOW KEPLER DISCOVERED THE TRUE RULE 

FOR CONSTRUCTING POINTS ON THE ORBIT OF MARS 
 

Chapters 57, 58 
 
 
 

CHAPTER 57 
 

BY WHAT NATURAL PRINCIPLES THE PLANET MAY BE MADE TO RECIPROCATE 
AS IF ON THE DIAMETER OF AN EPICYCLE 

 
 
Here we are doing physics again. Kepler keeps speaking of the planet making some sort of 
reciprocation along the line joining it to the sun which is the equivalent of its being on an 
epicycle. But sometimes he is thinking just of the mathematical relationships, other times of 
physical causes that might produce these results, other times of the connection between the 
physics and the mathematics. His own mind reciprocates, one might say—that is the nature 
of the discovering mind, to look back and forth. That is the motion of searching, and also of 
uncertainty. 
 
 
(1) THE RULE OF RECIPROCATION. Kepler begins the chapter by reintroducing the 
epicyclic diagram, suggesting that he will use it to ask questions about what the mind of the 
planet is doing, and after getting his physics straight. But he does not get into details about 
the rule for determining the reciprocation just yet. That will come up later, after his new 
physical ideas are brought forward. At the beginning of this chapter he says he will, by the 
end of Ch. 57, reject the idea of a planetary mind. “And since the finger points to a natural 
way of measuring this reciprocation, its cause will also be natural; that is, it will be some 
natural—or better, corporeal—faculty, and not a planetary mind.” (William H. Donahue 
translation.) 
 
 QUESTION: What is the opposition between the manner in which Mind operates, 
and that in which Nature operates, which Kepler is implying here? Nature acts uniformly, 
one definite fixed way, in accord with rules of intensity determined by proximity to the 
causal body; also it cannot do otherwise than it does, but does as much as it can, as soon as it 
can, and as long as it can; it does not adjust its power or reaction to some special purpose. 
And it is easy and smooth. Kepler seems to be thinking of a mind that has to perform 
calculations, like our own, which would therefore be clumsy, and hesitant. 
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 Here he also enunciates this physical PRINCIPLE: The planet by itself cannot move 
from place to place unless assisted or directed by an extrinsic force (since it has no feet, 
wings, etc.). That was from Ch. 39. Therefore “we must as a consequence also ascribe this 
reciprocation in part to the solar power.” So now he will introduce a way to understand how 
the Sun can in some way cause the “reciprocation.” 
 
 
 
(2) THE CIRCULAR RIVER. Kepler superimposes a diagram of a circular river upon our 
orbit (which is traced out by the star on the epicycle). He imagines a boat with an oar in the 
water, being oriented in different ways. We might also imagine a sailboat in a circular 
windstorm on the water. 
 The sailor rotates his sails (or oar, or rudder) 
180° for every time the wind (or water) carries the boat 
360°. So “the sailor revolves his oar once in twice the 
periodic time of the” ship which is analogous to the 
planet. 
 Imagine our sailor beginning at F, with his sails 
perpendicular to the wind. Then he is moving fastest 
there, being most effectively acted on by the wind. But 
as he goes to G and H, he rotates his sail 
counterclockwise to that by the time he is at C he has 
moved it 90°. His sail is now parallel to the wind, so 
that the boat moves very slowly. 
 Moving on toward intermediate points D and E, 
he continues to rotate the sail in the same direction, so that the boat is speeding up again 
(since the sails are becoming more perpendicular to the movement of the water). By the time 
he gets back down to F, his sail will have turned 180°. 
 
 
(3) SHORTCOMING IN THE CIRCULAR RIVER EXAMPLE. We had to make the oar (or 
sail) rotate at half the speed of the boat around the river, so that the oar (or sail) would 
always be perpendicular to the current at F, and parallel to it at C (if it turned 180° after 180° 
of travel in the river, it would be perpendicular in both places). But we want the planet to 
have the same speed on the epicycle as the epicycle does on the deferent! 
 Also, Kepler observes, while the force of a river is material, the force of the sun is 
“immaterial.” It is not altogether clear what Kepler means by this. The influence of the sun is 
invisible, but then again, so is air, and it is not “immaterial.” Probably he is thinking that 
since the periods of the planets increase as one goes out from the sun, therefore the lines of 
influence whirling about with the rotation of the sun, presumably with the same period as the 
sun’s rotation, have less efficacy further from the sun, yet they still affect the planets and 
cause them to orbit. It is as if the sun’s immaterial species were lines rotating with it, but 
they moved right through the planetary bodies, gently paddling them along. The further away 
from the sun, the more diffuse or attenuated these immaterial species become, and the less 
quickly they move the planet. 
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(4) A BETTER EXAMPLE: MAGNETS. Kepler says that from this very refutation comes 
another example which will work better. The river and the oar are alike in both being 
material, so since the Sun’s power is immaterial, let’s make the oar of the planet immaterial, 
too. What if all the planets are enormous round magnets? Of Earth there is no doubt. William 
Gilbert has proved it. 
 So Kepler posits a magnetic axis in the planet, giving it a North (indicated by the 
arrow-head in the diagram reproduced below) which seeks the Sun, and a South (the arrow-
tail) which flees the Sun. And the axis just stays parallel to itself. This is a bit physically 
troubling, but he finds support for it by a precedent: Its daily-rotation axis stays (more or 
less) parallel to itself all the time as it orbits the Sun. Here Kepler finds fault with 
Copernicus for thinking he needed a special principle to cause the Earth to rotate its axis at 
the same speed and in the opposite direction of its angular movement around the Sun. (This 
is the “piece-of-gum-on-a-record” image I use to explain Copernicus’s idea back in Day 32.) 
Kepler thinks this is superfluous, and it is better to say that Earth’s axis stays parallel to itself 
because that is natural, or what it does when no extrinsic causes are introduced to shift it. 
That notion is much closer to the modern idea of inertia. 
 
 
(5) THE MOVEMENT OF THE APHELIA. Kepler says he has one more motion left to 
explain by his magnetic hypothesis, namely the “extremely slow progression of the aphelia,” 
i.e. the precession of the planetary orbits (in our case, this is the same as the precession of the 
equinoxes). But we have no need to trouble ourselves with that detail. 
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CHAPTER 58 
 

IN WHAT MANNER THE RECIPROCATION DISCOVERED AND DEMONSTRATED IN 
CHAPTER 56 MAY BE ACCEPTED, AND NEVERTHELESS AN ERROR MAY BE 

INTRODUCED IN A WRONGHEADED APPLICATION OF THE RECIPROCATION, 
WHEREBY THE PATH OF THE PLANET IS MADE PUFF-CHEEKED 

 
 
(1) NATURE PLAYS HARD TO GET. Kepler opens this chapter with the following line: 
“Galatea seeks me mischievously, the lusty wench. She flees to the willows, but hopes I’ll 
see her first.” 
 What an opening! 
 He is quoting Vergil (from the Eclogues, 3.64). Kepler himself explains his reason 
for quoting this line: “It is perfectly fitting that I borrow Vergil’s voice to sing this about 
Nature. For the closer I approach to her, the more petulant her games become, and the more 
she again and again sneaks out of the seeker’s grasp just when he is about to seize her 
through some circuitous route. Nevertheless, she never ceases to invite me to seize her, as 
though delighting in my mistakes.” (William H. Donahue translation.) 
 The pre-Socratic philosopher said that “Nature loves to hide.” 
 Kepler more colorfully says “Nature plays hard to get.” 
 
 
(2) THE AIM OF THE WHOLE BOOK is stated with remarkable clarity and brevity in the 
second paragraph of Ch. 58. “Throughout this entire work, my aim has been to find a 
physical hypothesis that not only will produce distances in agreement with those observed, 
but also, and at the same time, sound equations,” he means ANGLES, “which hitherto we 
have been driven to borrow from the vicarious hypothesis of Ch. 16.” He is repeating what 
he said in the introduction to the book. The goal is to find really-existing and plausibly-
operating physical causes for the motions of the stars which will produce the correct 
distances and the correct angles for the location of a planet at given times. The coherence of 
the physics with the mathematics, and the necessity with which the physics produces the 
mathematics, he takes to be a sign of the truth. The true can follow from the false, but not in 
that way! 
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(3) HOW KEPLER DISCOVERED THE TRUE RULE FOR CONSTRUCTING POINTS 
ON THE TRUE ORBIT OF MARS. 
  Kepler draws the diagram again for his epicyclic hypothesis. 
 A is the Sun. 
 QG is the Martian line of apsides. 
 B is the midpoint of QG, and the geometric center of the perfect circle GDQ, our 
good old circular hypothesis. 
 C is the equant-point. 
 HKRS is another, equal circle, center A (the Sun), which is the deferent in the 
epicyclic equivalent to our good old circular hypothesis. K and R are two different positions 
of the epicyclic center, with the epicyclic radius DK = RP = AB (the eccentricity), and DK 
always remains parallel to itself, so that it describes the circle of the hypothetical orbit. 
 Now drop DE perpendicular to EA, producing the specific “reciprocation” LE. 
 Kepler says he had already become convinced, by Ch. 56, that AE is a true distance 
to the Martian orbit—but where does that distance occur? Or rather, WHEN does it occur? In 
Ch. 56, he thought the rule was to take AE as a radius, A as center, and draw a circle cutting 
AD at I, so that AI = AE, and point I would be a point on the true orbit of Mars. 
 Here he shows that this was a mistake. The same circle will cut the perpendicular DC 
a little higher up, at F, and that turns out to be a point on the true orbit of Mars. As we noted 
in Day 45, he originally picked the wrong rule. 
 How does he determine this? By the TIMES each rule determines, since each 
determines AREAS around the Sun. 
 If the planet were at I after the same time it takes the epicycle (in the version which is 
equivalent to the old circular orbit) to bring the planet to D, then by the area-law, this time is 
proportional to the area DAG in our simple circular orbit. If we now take that amount of time 
(i.e. that same portion of the Martian period), that tells us exactly WHEN Mars should be at 
I. This is what Kepler means by saying he “fitted the angle IAG, rather than FAG, to this 
area DAG, now converted to time,” i.e. he paired the angle IAG with the time proportional to 
DAG. That done, he found that the angle IAG disagreed with those determined by reasoning 
from observations, i.e. that angle was not the one Mars actually had at the appointed time. 
 This is how he discovered that I was the wrong point, and F was the right one. 
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(4) THE FINAL MISTAKE: THE “PUFF-CHEEKED” 
ORBIT BASED ON THE SLIGHTLY ERRONEOUS 
RULE OF CH. 56. 
 Kepler shows that the orbit produced by taking the 
wrong rule, the rule of point I, is “puff-cheeked.” I think we 
are to imagine a pear-shape. What he shows, geometrically, 
is that if we assume the “I-rule” is correct, and if we take 
the epicycle at K and R so that arcHK = arcRS, and hence 
also arcGD = arcQP (or ∠GBD = ∠QBP), and if we draw 
the points on the orbit (according to the “I-rule”) for the 
locations of the epicycle at K and R (let these be I and N), 
and if we draw BID through to the simple circular 
hypothesis, and BNP through, then, even though ∠GBD = 
∠QBP, nevertheless PN > DI. 
 This asymmetry would not happen if the path were 
an ellipse. So had Kepler known the path was an ellipse, he 
would very easily have realized that the “I-Rule” is wrong, 
since it produces an asymmetrical path, and therefore not an 
ellipse. 
 He proves that PN > DI as follows. 
 
 
 ∠DKE = ∠BAK (DK parallel to AB) 
 ∠PRM = ∠PBA (opp. angles in parallelogram PRAB) 
but ∠PBA = ∠BAK (arcGD = arcQP) 
so ∠DKE = ∠PRM 
but KD = PR  (both are equal to AB, the eccentricity) 
and ∠DEK = ∠PMR  (both are 90°) 
so rDEK is congruent to rPMR 
so ED = MP. 
 
But ∠EDI = ∠MPN  (both are 90°, since ED is perpendicular to BD, MP to BP) 
 
And AE > AM (since AK = AR, but AE is greater than these, AM less) 
 
so circle radius AE (or AI) is greater than circle radius AM (or AN) 
 
Now consider what we have. 
 AMP is a right angle, and so is AED. 
 MP = ED. 
but AM < AE. 
So what happens when we draw the circles on radii AM, AE, cutting the parallels DB and 
PB at I and N? 
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 PN > DI. 
This could be proven, but Kepler takes it as obvious. 
 
So the orbit is “puff-cheeked,” i.e. fatter down in its lower region than it is in the 
symmetrical point in the upper region. 
 
 
(5) KEPLER DID NOT RECOGNIZE THE ELLIPSE. 
 Kepler, understandably, did not at first recognize the ellipse as the LOCUS of points 
produced by the new, correct rule (where we take the intersection of the circles with the 
perpendiculars). He is harder on himself, though: “O ridiculous me! To think that the 
reciprocation on the diameter could not be the way to the ellipse!” 
 He says he already knew that the ellipse produced the right equations, but he did not 
recognize the ellipse as the locus of the points produced by the rule of reciprocation. But 
even at that point he did seem to know that the true orbit was symmetrical top-and-bottom, 
since he rejects the “puff-cheeked” orbit, resulting from the incorrect rule for finding the 
angle of the correct distances, on the grounds that it is not symmetrical top-and-bottom. 
 
 
(6) THE THOUGHT UNDERLYING THE EPICYCLIC EQUIVALENT. 
 It might seem amazing to us that Kepler keeps bringing us back to an epicycle, when 
he himself does not believe in the physical possibility of an epicycle. And we might think 
that he was slow to have done with epicycles simply because he was coming from a world in 
which epicycles abounded in astronomy. But his real preoccupation with it has to do with his 
physics. The true orbit of Mars is so extremely close to being a circle that it seems natural 
and inevitable to consider it as an “adjusted circle.” But what could possibly be the cause of 
this “adjusting”? 
 Since the orbit of Mars will turn out to be a nearly-
circular ellipse (as we shall see), one could easily define its 
orbit as an “adjustment” of the circle whose diameter is the 
line of apsides. That is, if B is the center of our original 
circular hypothesis, BE the radius at right angles to the line 
of apsides, P the point where the true (elliptical) orbit of 
Mars cuts it, it is true to say also that if we choose any other 
random point R along the circumference of the circle and 
drop RND at right angles to the lines of apsides, then 
 
 RD : ND = EB : PB 
 
We will prove this later. But for now it is enough to see that there is something quite true 
about calling the orbit of Mars an “adjusted circle.” And yet the kind of adjustment just 
defined hardly illuminates the physical cause of it! 
  

D

B

A

E P

R
N



 44 
 

           The only candidate causes are Mars and the Sun, the two corporeal entities in question 
possessed of causal powers. So let the location of hypothetical Mars, on the old circle, be D, 
and join DB. That is, as it were, Mars’s default position until we introduce an “adjustment.” 
How do Mars and the Sun cooperate so as to produce F, the corresponding point on the true 
orbit of Mars? Well, mathematically, if we extend DB to S where AS is perpendicular, the 
length DS will be equal to AF. 
 And if we join AK and extend it to E where DE is perpendicular to AE, the length 
AE will be equal to AF, too. That is the epicyclic’s equivalent way of producing the right 
distance. 
 Kepler seems to be haunted by the fact that the length of AF is thus the product of 
ghosts. After all, there is nothing at K or D or E or B or S. But at least there is something at 
A––the Sun! Kepler is at pains to explain how length AE or SD (and then the use of it as a 
radius, intersecting the perpendicular DC, or, in the erroneous rule of Ch. 56, intersecting the 
line BD) can result from MAGNETIC interaction between Mars and the Sun. Since Kepler’s 
magnetic theory is finally not correct, we will not go into further detail on it. A more correct 
understanding of the physics of celestial motions must wait until Newton. It is really only 
with his help that we become fully emancipated from the circle, in which the elliptical orbit 
of Mars is understood in its own right as the product of inertial velocity and gravitational 
pull, and not as an “adjusted circle.” 
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KEPLER 
 

DAY 47 
 
 

BASIC GEOMETRY OF THE ELLIPSE 
IN PREPARATION FOR DEMONSTRATING 
THAT THE ORBIT OF MARS IS AN ELLIPSE 

 
Chapter 59 

 
 
 
Chapter 59 is the big one—the chapter in which Kepler will demonstrate that the orbit of 
Mars is in fact an ellipse. He does not in this chapter mention that the Sun is at the focus, 
although he is the one who realized this, and in fact he gave that particular point in the 
ellipse the name “focus.” More on this later. 
 Ideally, a reader of the Astronomia Nova would already be familiar with the geometry 
of conic sections as presented in the first three books of On Conic Sections by Apollonius of 
Perga. But since that book is not very widely read, I will try to supply what knowledge of 
conics Kepler assumes on our part. Actually, the argument that the orbit of Mars is an ellipse 
requires only one very simple theorem which we can prove directly from a cone, without all 
the preceding theorems in Apollonius. In proceeding this way, I will be imitating Galileo, 
who did much the same thing in his Two New Sciences, when proving certain fundamental 
things about parabolas to readers unfamiliar with Apollonius. 
 I will also supply a quick and elegant derivation of the chief focal property of the 
ellipse, again from the cone, and without the mass of preliminary propositions which 
Apollonius requires for the same. In each case what makes the great simplicity possible is the 
fact that I will be using a right cone, and talking only about the axis of an ellipse, whereas 
Apollonius is interested in making his theorems apply to all cones, oblique ones included, 
and he is also keen to show that many of the properties of the axis belong also in some way 
to every diameter in the ellipse. But we are not studying the ellipse for its own sake, here, 
and so we can afford to give up generality for the sake of brevity and clarity. 
 Here in Day 47, then, I will first show four things: 
 
LEMMA 1. Whenever you cut a right cone with a plane, the section produced has an axis, 
that is, a straight line within it which bisects all the straight lines drawn at right angles to it 
and from one side of the section to the other. 
 (These straight lines drawn at right angles to the axis and bisected by it are said to be 
“drawn ordinatewise” to the axis, and their halves are called “ordinates.”) 
 
 
LEMMA 2. Whenever you cut a right cone with a plane so as to produce a closed section, the 
squares on any two ordinates to the axis are to each other as the rectangles contained by the 
segments into which those ordinates divide the axis.  
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LEMMA 3. In a right cone, if a closed section is formed by a cutting plane which is not 
parallel to the base of the cone, i.e. not at right angles to the axis of the cone, then the closed 
section is not a circle. 
 (These non-circular closed conic sections are called “ellipses.”) 
 
 
LEMMA 4. If in a right cone containing an ellipse two spheres be inscribed, each one 
tangent to the cutting plane at a point and to the cone’s surface at a circle, one above and 
the other below the cutting plane, then the two points of tangency lie on the major (greater) 
axis of the ellipse, and the sum of the straight lines drawn from them to any point on the 
ellipse is equal to the axis of the ellipse.  
 (These two points are called the “foci” of the ellipse; each one is called a “focus” of 
the ellipse.) 
 
 
 
Now let’s prove these things . . . 
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LEMMA 1. Whenever you cut a right cone with a plane, the section produced has an axis, 
that is, a straight line within it which bisects all the straight lines drawn at right angles to it 
and from one side of the section to the other. 
 (These straight lines drawn at right angles to the axis and bisected by it are said to be 
“drawn ordinatewise” to the axis, and their halves are called “ordinates.”) 
Let V be the vertex of a right cone (i.e. a cone whose axis VC is at right angles to its base 
circle, center C). 
 If the cutting plane is parallel to the base circle, then the common section of it and the 
conic surface will clearly be another circle, in which case the conic section obviously has an 
axis, since every diameter of a circle is an axis—that is, a straight line in the circle which 
bisects all the straight lines drawn at right angles to it and from one side of the circle to the 
other. 
 If the cutting plane is not parallel to the base circle, then it will cut the base circle (or 
a circle parallel to it) somewhere inside the cone, say along the straight line SN. And the 
common section of the cutting plane and the conic surface will be a continuous line such as 
SAN. I say that this conic section, too, has an 
axis. 
 Draw CX at right angles to SN in the 
base circle. 
 Extend XC to D and B at opposite ends 
of the base circle; hence DXCB is a diameter 
of that circle. 
 Clearly if we join VD and VB (which 
straight lines lie on the conic surface), since 
they intersect at V, it is not possible for the 
cutting plane to be parallel to both, and hence 
it cuts at least one of them—say VD, at A. 
 Join AX (which lies in the plane of 
rVBD). 
 I say that AX is an axis of the conic 
section. 
 
 Choose any point P on the conic section, and draw PQR at right angles to AX, that is, 
parallel to SXN. 
 Through Q, and in the plane of rVBD, draw TQW parallel to DXB (which therefore 
cuts VC, say at K). 
 Therefore the plane through PQR and TQW is parallel to the plane through SXN and 
DXB. But the planes parallel to the plane of SXN and DXB, i.e. to the plane of the base 
circle, obviously make circles on the conic surface. Therefore T, R, W, P lie on a circle. 
 But just as DCB is the diameter of the base circle, and C is its center, so too TKW is 
the diameter of the circle through T, R, W, P, and K is its center. 
 
Now, since SXN is at right angles to DXB [construction] 
and  PQR is parallel to SXN  [construction] 
and  TQW is parallel to DXB  [construction] 
thus  PQR is at right angles to TQW 
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But  PR is the chord of a circle and TQW is its diameter. 
 
Thus  PR is bisected at Q. 
 
Therefore, taking a random point P on the conic section, and drawing a perpendicular from it 
to our line AX and through to the other side of the section, AX bisects it. 
 
Therefore AX is an axis. 
 
Q.E.D.  
 
 
Vocabulary: 
 
AX is called an “axis” of the conic section, that 
is, a straight line passing through the section 
which bisects all the chords to the section which 
are at right angles to itself. 
 
Lines such as PQR and SXN, drawn at right 
angles to the axis and bisected by it, are said to be 
“drawn ordinatewise” to the axis, and each of 
their halves, for instance PQ or SX, is called an 
“ordinate.” 
 
And any triangle such as VBD, with the vertex of 
the cone as one of its vertices, and having for its 
other two vertices the ends of a diameter of the 
base circle of a right cone, is called an “axial triangle” in the cone, since such a triangle 
passes through the axis of the cone VC. 
 
PORISM: Hence it is clear that in a right cone, the axis (AX) of a conic section (SAN) is the 
intersection of the cutting plane (SAN) with that axial triangle (VBD) which cuts the 
intersection of the cutting plane and the base plane (SN) at right angles (i.e. BCD is at right 
angles to SN).  
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LEMMA 2. Whenever you cut a right cone with a plane so as to produce a closed section, the 
squares on any two ordinates to the axis are to each other as the rectangles contained by the 
segments into which those ordinates divide the axis.  
 
Not every conic section is a closed figure—parabolas and hyperbolas open up forever. But 
we are not concerned with them for the moment. We are concerned with the ones which form 
closed figures. 
 That happens whenever the cutting plane cuts both sides of an axial triangle VBA—
for example, the circle CK (in cone below) cuts both sides of the axial triangle, namely VB 
and VA, and so does the figure ES. 
 In closed-figure conic sections like these, the squares on the 
ordinates are to each other as the rectangles contained by the segments 
of the axis into which they respectively divide the axis. 
 If the section is parallel to the base circle, then it is itself a 
circle, and then this theorem is obvious, since in the case of a circle, 
the square on any ordinate is equal to the rectangle contained by the 
segments into which it divides the axis (or diameter). For example, if 
MN is a diameter of a circle, and OW and QX are drawn ordinatewise, 
then 
 
 OW2 = MO·ON 
and QX2 = MQ·QN 
so OW2 : QX2 = MO·ON : MQ·QN 
 
 If the section is not parallel to the base circle, then it will be cut by planes drawn 
parallel to the base circle. 
 
Let V be the axis of a right cone, base circle of 
diameter AB. Let ES be a closed conic section for 
which ES is the axis, and VAB the axial triangle in 
whose plane ES lies (Lemma 1), and let it be that ES 
is not parallel to the base circle. Then I say that the 
squares on the ordinates are still as the rectangles 
contained by the segments into which the axis is 
divided by the ordinates. For take any two points on 
the section, N and T, and through these pass planes 
parallel to the base plane. Therefore these planes will 
be circles intersecting the cutting plane in straight 
lines as GN and HT, which are ordinates to the axis 
(Lemma 1), and which are thus parallel to each other 
and also bisected by ES, as at L and P. But these 
ordinates also lie in the planes of the parallel circles, 
and are with equal reason ordinates in the circles to 
the diameters CK and DM. 
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Now (EL : EP) c (LS : PS) = (EL : EP) c (LS : PS)
 [obviously] 
so (CL : DP) c (LK : PM) = (EL : EP) c (LS : PS)
 [similar triangles ELC and EPD, KLS and MPS] 
so CL·LK : DP·PM = EL·LS : EP·PS  
 [forming the rectangles] 
i.e. NL2 : TP2 = EL·LS : EP·PS  
 [property of the circles] 
 
Q.E.D. 
 
NOTE: This theorem corresponds to Apollonius’s 
Theorem 21 of Book 1 of his Conics.  
 
 
 
 
 
 
 
 
LEMMA 3. In a right cone, if a closed section is formed by a cutting plane which is not 
parallel to the base of the cone, i.e. not at right angles to the axis of the cone, then the closed 
section is not a circle. 
 (These non-circular closed conic sections are called “ellipses.”) 
 
 
Let V be the vertex of a right cone, ES a closed section not parallel to the base circle, ES its 
axis, rVBA the axial triangle in which ES lies. 
 
I say that section ES is not a circle. 
 
For let ES be bisected at C, and through C pass a plane 
parallel to the base circle, thus producing circle DKGL with 
KCL a common ordinate to both the conic section in 
question and the circle whose diameter is DG (which is 
parallel to AB). Clearly, if section ES is a circle, then C 
would have to be its center, since ES is its axis. And thus 
KC would have to be equal to EC and CS, and hence KC2 
would have to be equal to EC·CS. Hence proving that KC2 
< EC·CS would be sufficient to prove that section ES is not 
a circle. 
 
Now ∠BDC < ∠DEC  [exterior angle of rDEC] 
so ∠AGC < ∠DEC  [∠AGC = ∠BDC since the cone is right] 
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i.e. ∠SGC < ∠DEC 
 
So if we draw ∠CGT = ∠DEC, then GT falls inside the cone, 
and hence if we draw SR parallel to GT, then SR falls outside. 
So now 
 
 ∠CRS = ∠CED 
thus rDEC is similar to rCRS 
so DC : CS = EC : CR 
so DC·CR = EC·CS 
 
so DC·CG < EC·CS  [since CG < CR] 
so KC2 < EC·CS  [since KC2 = DC·CG by the circle] 
 
Hence section ES is not a circle. 
 
Q.E.D.  
 
Such a section is called an “ellipse.” 
And, since KCL is another axis of the ellipse, but it is less than ES, it is called the “minor 
axis,” i.e. the lesser one, and the original axis we discovered, ES, which lies in the plane of 
an axial triangle, is called the “major axis,” i.e. the greater one. 
LEMMA 4. If in a right cone containing an ellipse two spheres be inscribed, each one 
tangent to the cutting plane at a point and to the cone’s surface at a circle, one above and 
the other below the cutting plane, then the two points of tangency lie on the major (greater) 
axis of the ellipse, and the sum of the straight lines drawn from them to any point on the 
ellipse is equal to the axis of the ellipse.  
 (These two points are called the “foci” of the ellipse; each one is called a “focus” of 
the ellipse.) 
 
The focal properties of conics are beautifully and 
memorably derived by means of the “Dandelin 
Spheres” (named for the Belgian mathematician 
Germinal Pierre Dandelin) in a right cone. What is 
a “Dandelin Sphere”? If we have a right cone, a 
sphere “dropped in” will be tangent to the conic 
surface at a circle, C, which is parallel to the base 
circle. And if such a sphere be tangent to the 
cutting plane producing our conic section, it will 
be tangent to it at a single point P. Such a sphere is 
called a “Dandelin Sphere,” and by means of it we 
can derive the main focus property of the ellipse 
(in fact, all the basic focal properties of all the 
conics, but we will not go that far). 

C

P

V

S

AB

E

D

G

C RG

T



 136 
 

The Dandelin-Sphere derivation of the focus property of an ellipse. 
 
Given an ellipse with major axis AB, let it be included in a right cone of vertex V, with the 
plane of the axial triangle VMK producing axis AB. 
 
Let Dandelin Spheres be inscribed, one tangent to the conic surface above the ellipse at circle 
DG and to the plane of the ellipse at S, another tangent to the conic surface below the ellipse 
at circle KM and to the plane of the ellipse at F. 
 
Choose a point E at random on the ellipse. 
 
I say that FE + ES = AB 
 
Join VE, cutting circle DG at C and circle KM at T. 
 
Now  SB = BG  [being 2 tangents to 1 sphere from 1 point] 
and  FB = BM  [again, tangents] 
so  SB + FB = GM 
 
And  FA = AK  [again, tangents] 
and  SA = AD  [again, tangents] 
so  FA + SA = KD 
 
But  GM = KD  [given the parallel circles  

and the right cone] 
so  SB + FB = FA + SA 
so  SB + (FS + SB) = FA + (FS + FA) 
so  2SB = 2FA 
so  SB = FA  [thus F, S are equidistant  

from A, B] 
 
But  GM = SB + FB  [first result above] 
so  GM = FA + FB 
so  GM = AB 
or  CT = AB 
 
Now  EF = ET  [again, tangents] 
and  ES = EC  [again, tangents] 
so  FE + ES = CT 
 
 
So F and S have the familiar focal property you might have learned 
in high school. 
 
Q.E.D.  
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COROLLARY 1: The foci are equidistant from the midpoint of the major axis (or from the 
ends of the major axis). That is, if D is the midpoint of the major axis, 
 
 FD = DS 
 
For it was shown in the course of the proof that 
 
 SB = FA 
 
 
COROLLARY 2: If AB is the major axis of an ellipse, and D is the midpoint of the axis (the 
“center” of the ellipse), and DP is set up at right angles to the major, and hence is the half the 
minor axis (i.e. the “semi-minor”), and if F and S are the foci, then FP + PS = AB, by the 
focal property. But since F and S are also equidistant from D (Cor. 1), the midpoint of the 
axis, thus FP = PS. Hence each of these lengths is equal to half the major. Hence if P is the 
endpoint of the semi-minor, and PF = semi-major, then F must be the focus. 
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KEPLER 
 

DAY 48 
 
 

Chapter 59 
Protheorems I – VII 

 
 
 
Kepler himself develops some geometry of the ellipse as a preliminary to his proof that the 
orbit of Mars is an ellipse. These preliminaries he calls by the odd name of “protheorems.” 
Perhaps what he means by the word is as follows: just as a “proposition” is a “position” 
which is laid down for the sake of proving a further position, that is, it is a premise, so too a 
“protheorem” is a “theorem” which is put forth for the sake of generating a further theorem 
from it. So a “protheorem” is like a lemma, except that unlike most lemmas, a protheorem is 
to some extent interesting in itself. The word “lemma,” recall, is derived from a Greek verb 
meaning “to take (for granted).” He proposes twelve of these protheorems, but for today we 
will only look through the first seven. Even this will be going a bit overboard, since we only 
need Protheorems 1, 6, and 7 in order to follow the argument showing that the orbit of Mars 
is an ellipse. 
 
 
 
 
PROTHEOREM 1 
 
 
Given:  Circle H, diameter AC 
  Ellipse H, major AC, minor BR 
  Random perpendicular KML 
 
Prove:  LM : LK = BR : AC 
 
 
 LM2 : BH2 = AL·LC : AH·HC 
 [Lemma 2, Day 47] 
 LK2 : EH2 = AL·LC : AH·HC 
 [circle property] 
so LM2 : BH2 = LK2 : EH2  
so LM : LK = BH : EH 
but BH : EH = BR : AC    [halves are as doubles] 
so LM : LK = BR : AC 
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i.e. any such lines as LM, LK cut by the circumference of the ellipse and of the circle are 
to each other all in the same ratio, i.e. as the minor to the major. 
 
Q.E.D. 
 
 
NOTE: The converse is also true, i.e. that if you have a locus of all the points that cut the 
ordinates to an ellipse (or circle) in the same ratio, that locus is an ellipse (or a circle, if you 
get lucky). 
 
 
 
 
 
 
PROTHEOREM 2 
 
 
An ellipse is to its auxiliary circle (i.e. the one whose 
diameter is the major axis) as the minor is to the 
major. 
 
Kepler refers to Archimedes’s treatise On Spheroids, 
but the argument there is prolix and tedious. The 
Newton-style method is much easier: Cut the area of 
both the circle and the ellipse into as many tiny 
pieces as you like with thousands of ordinates, and 
then draw inscribed rectangles on them. Since any one rectangle in the semicircle will be 
under the same height as the corresponding rectangle in the semi-ellipse, these will be as 
their bases, e.g. as KL : LM. But that ratio is the same for all, i.e. it is the same as the ratio 
EH : BH, or as major to minor, as proved in Protheorem 1. Componendo, the sum of all the 
rectangles in the semicircle is to the sum of all in the semi-ellipse also in that ratio. But these 
rectangle-sums, always as the major to minor, each get as close as we please to the area of 
the semicircle and semi-ellipse. Therefore those two areas are also as major and minor. (If 
two areas are always as 5 : 7, no matter how close they get to being equal to A and B 
respectively, then the ratio of A : B must be the same as 5 : 7.) 
 
 
PORISM: This same argument works for any two areas which are cut off by an ordinate in 
the two figures, e.g. Area AKL : Area AML = Major : Minor. 
 
 
Q.E.D. 
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PROTHEOREM 3 
 
 
NOTE: This is not needed for the argument for the 
elliptical orbit, but it is needed for Protheorem XV. 
 
Given:  Circle H, diameter AC 
  Ellipse H, major AC 
  Random perpendicular KML 
  Random N on AC 
 
Prove:  Area AMN : Area AKN = Minor : Major 
 
 
Well,  Area AML : Area AKL = ML : KL  [Protheorem 2, Porism] 
but  rNML : rNKL = ML : KL   [Euc. 6.1] 
so  Area AMN : Area AKN = ML : KL  [adding terms in first ratios] 
but  ML : KL = Major : Minor   [Protheorem 1] 
so  Area AMN : Area AKN = Major : Minor 
 
 
Q.E.D. 
 
 
 
 
PROTHEOREM 4 
 
 
Given:  Circle H, diameter AC 
  arc AN = arc ND = arc DK = arc KE (any # of equal arcs) 
  NPT, DFG, KML, EBH each perpendicular to AC 
 
Prove:  arc BM and arc EK are more equal than arc NA and arc PA 
 
For, close to vertex A, 
 

arc NA : arc PA = NT : PT (very   
nearly) 

 
So the elliptical arc PA becomes less than the 
circular arc NA more and more in the ratio of PT 
: NT, as we take AT smaller and smaller. But as 
we get down to the middle arcs, like KE and MB, 
the arcs are nearly equal. “This is self-evident,” 
says Kepler. Good enough, let’s say. 
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PROTHEOREM 5 
 
 
The entire elliptical circumference is approximately 
the arithmetic mean between the circle on the greater 
diameter and the circle on the smaller diameter. 
 
So draw a circle on the major axis as diameter, and 
another on the minor axis as diameter, and Kepler is 
saying: The circumference of the ellipse is close to 
being the arithmetic mean of the two circular 
circumferences (i.e. half their sum). 
 He cites Ch. 48 (which we don’t read) and 
also Archimedes’ On Spheroids Prop. 7. 
 (a) Archimedes showed (he says) that the area of a circle drawn on the mean 
proportional between the 2 axes of an ellipse is equal to the area of the ellipse. 
 [That is not too difficult. The ellipse is to the circle on its major as minor to major 
(from Protheorem 2); but circles are as squares on their diameters; so what circle will be to 
the circle on the major as the minor to the major? Not the one on the minor, since that will be 
to the one on the major as the square on the minor to the square on the major. So we have to 
find a circle the square of whose diameter is to the square of the major as minor to major. 
Call the major J, the minor N. Obviously if we construct √JN, the square of this will have to 
the square of J the ratio JN : JJ, i.e. N : J, i.e. of minor to major. So the circles on √JN and J 
will be as minor to major. But the ellipse is to the circle on J as minor to major. Hence the 
circle on √JN is equal to the ellipse.] 
 (b) Kepler showed (he says, referring to Ch. 48) that the circumference of the ellipse 
is longer than that of this circle. 
 [This is also not too difficult. The circle and the ellipse have the same area. But the 
circle is more uniform, and so needs less circumference to enclose the same area.] 
 (c) But the arithmetic mean is also longer than the geometric mean (just take the 
extremes in one line as diameter of a circle, and compare the perpendicular radius to the 
perpendicular from the point separating the original extremes). 
 (d) Kepler seems to be taking it as self-evident that the circumference of the ellipse is 
greater than that of the circle on J as diameter, and less than that of the circle on N as 
diameter. Hence it will be close to being the arithmetic mean of these two circles’ 
circumferences. More than that, it is less than the circumference of the circle equal to it, i.e. 
the one on √NJ as diameter. Now, since the circumferences of circles are as their diameters, 
and √NJ is the geometric mean between N and J, therefore the circumference of the circle on 
√NJ is also a geometric mean between that of the other two circles. And this geometric-
mean-circumference is LESS than the circumference of the ellipse. Therefore the 
circumference of the ellipse is MORE than the geometric mean between the circumferences 
of the circles. But so is the arithmetic mean. So that will be close. 
 
Q.E.D. 
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PROTHEOREM 6 
 
 
 
Gnomons of squares divided 
proportionally are as the 
squares. 
 
 
Given:     ML : LK = BH : HE 
 
 
Prove:  gnom KOQ : gnom ERC = LP : HS 
 
 
 
  ML2 : LK2 = BH2 : HE2   [from the given] 
or  LO : LP = HR : HS   [renaming the squares] 
so  LP – LO : LP = HS – HR : HS 
i.e.  gnom KOQ : LP = gnom ERC : HS 
alt.  gnom KOQ : gnom ERC : LP : HS 
 
 
Q.E.D. 
 
 
NOTE: The converse is also true. 
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PROTHEOREM 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
Given:  Ellipse center H, major AC, minor HB 
  Circle center H, radius EH coincident with minor HB 
  BN = HC (so N is a focus!) 
  gnomon ERC formed in square EHC, with square RS = EB2  
 
Prove:  HN2 = gnomon ERC 
 
 
  HN2 = BN2 – BH2   [1.47] 
  HN2 = HC2 – BH2    [BN = HC, given construction] 
  HN2 = gnomon ERC  
 
Q.E.D. 
 
NOTE: If we make HQ = HN, it follows that BQ = NB. But BN = HC by construction, and 
therefore BN + BQ = 2CH = CA, the major. And since N and Q are equidistant from the 
center of the ellipse, it follows that N and Q are foci. 
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“PROTHEOREM 7½” (This is my own addition) 
 
Given:  Circle H, radius HK 
  KL perpendicular to the diameter AC 
  N any point on HC 
  NT perpendicular to HK 
 
Prove:  KT > NL 
 
 
 
(This is for the sake of proving that Kepler’s orbit-point 
construction will actually produce a point on KL!) 
 
 
  NH < HC   [part < whole] 
  NH < HK   [HC = HK, radii] 
but  NT : KL = NH : HK  [rHTN similar to rHLK] 
so  NT < KL 
so  NT2 < KL2  
so  KN2 – NT2 > KN2 – KL2  [the same, minus the lesser, is greater] 
i.e.  KT2 > NL2   [1.47] 
so  KT > NL 
 
Hence a circle of radius KT, drawn around N as center, will cut perpendicular KL. 
 
But it is furthermore obvious that NK > KT (NK is the hypotenuse in rNKT), and therefore 
the circle of radius KT, drawn about N as center, must cut KL inside the circle. 
 
Q.E.D. 
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KEPLER 

 
DAY 49 

 
 

THE ORBIT OF MARS IS AN ELLIPSE 
WITH THE SUN AT ONE FOCUS 

 
Chapter 59 

Protheorems XI, XV 
 
 
 
 
 
 
PROTHEOREM 11 
 
For this proof, Kepler trots out his epicycle 
again. So first let’s do it his way. 
 
In the opening line of the chapter, he refers to 
this as “the demonstration,” i.e. the 
culmination of the preceding lemmas. He is 
showing that the orbit of Mars is an ellipse, 
and the Sun resides at the focus, although his 
style is so obscure one could easily read the 
whole chapter and not realize that. 
 
He begins with an ellipse whose major axis AC is the line of apsides in the circle of the 
good-old-circular hypothesis. He takes equal arcs on that circle, but this is not really crucial 
for this first demonstration; any arcs will do (though he will, in Protheorem XV, become 
concerned with comparing arcs on the circle to arcs on the ellipse for the sake of determining 
whether these are equivalent enough to save the area-clock rule for the ellipse, since he 
originally developed it for the circle). But he draws HBE perpendicular to AC, and cutting 
the ellipse and circle in B, E. He picks another point L (it can be random) along AC, and 
draws LMK perpendicular to AC, cutting the ellipse and circle in M, K. Using EB, the 
“breadth of the lunule,” he completes the gnomon ERC within the square EHCS, and using B 
as center, HC as radius, he draws a circle, cutting AC at N. Hence BN = HC (as in the 
construction for Protheorem 7). 
 
He joins KH and extends this through to the circle at I, dropping IV perpendicular to AC, and 
cutting the ellipse at Y. He joins NK, NM, NI, NY. 
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Then he reintroduces the epicycle: “Further, let the 
diagram of Chs. 39 and 57 be brought back . . .” 
 
Let the Sun be at α, (corresponding to point N) 
Let the radius of the epicycle equal the eccentricity, i.e. 
βγ = HN 
Let arc γδ be similar to arc AK 
Let αβ be equal to HA, the radius of the eccentric. 
 
 
Now, Kepler has a two-part enunciation: 
 
 
 
 
 (1) NK = αδ, i.e. NK is “the circumferential distance.” But 
this is a mere equivalence proof, which was done in Ch. 2. To see it 
quickly here: If we make K the top of the radius of the epicycle, 
keeping that radius always parallel to itself as the epicycle goes 
around the deferent, then of course NK = αδ , i.e. NK = αθ, since 
 
 αβ = HK  (by construction) 
and βθ = HN  (by construction) 
and ∠γβθ = ∠AHK (by construction) 
so ∠θβα = ∠KHN (their supplements) 
so rKHN is congruent to rθβα  
so NK = αθ 
or NK = αδ 
 
 
 
 
 (2) NM = ακ, i.e. NM is “the diametral distance,” i.e. the distance determined along 
the diameter of the epicycle. In other words, the distance to the ellipse is the same as the 
distance determined by the epicycle which he showed, in Chs. 56 and 57, to be the correct 
distances to the Martian orbit from point N. 
 
The proof of this second part is as follows. 
 
First KN2 = KL2 + LN2    [1.47] 
and MN2 = ML2 + LN2    [1.47] 
so KN2 – MN2 = KL2 – ML2   
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Now complete KL2 and its gnomon on KM, i.e. square KPQL and gnomon KOQ. 
 
So KL2 – ML2 = gnomon KOQ 
thus KN2 – MN2 = gnomon KOQ   [***] 
 
Now KL : EH = KM : EB     [Protheorem 1] 
so KL2 : EH2 = gnomon KOQ : gnomon ERC [Protheorem 6] 
and KL : EH = δκ : βγ 
 
(since KL : EH is the sine of ∠KHL, i.e. of ∠KHA, which, by construction, is equal to 
∠δβγ, and therefore sin ∠KHA = sin ∠ δβγ, i.e. KL : EH = δκ : βγ) 
 
Thus δκ2 : βγ2 = gnomon KOQ : gnomon ERC 
 
But βγ2 = HN2    [epicyclic radius = eccentricity] 
and HN2 = gnomon ERC   [by Protheorem 7] 
so βγ2 = gnomon ERC 
so δκ2 = gnomon KOQ   [looking back to the last proportion] 
 
Thus δα2 – κα2 = gnomon KOQ  [1.47] 
i.e. KN2 – κα2 = gnomon KOQ  [NK = αδ by (1) above] 
but KN2 – MN2 = gnomon KOQ [by the earlier step, marked *** above] 
so MN = κα  
 
Q.E.D. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now all of that is more difficult and strange than it needs to be, since we have no more need of an 
“epicycle,” having no special attachment to Kepler’s ideas about “reciprocation.” Also, he does not 
bring out, here (as he does in The Epitome of the Copernican Astronomy), that N is the focus! 
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So let’s do it again, more simply, sans epicycle. 
 
 

GIVEN: Sun at N 
 Martian line of apsides ANC, center H 
 Circle AKEC on diameter AC, center H 
 KML any perpendicular to AC, cutting Mars’s orbit at M 
 Radius EBH perpendicular to AC, cutting Mars’s orbit at B 
 BN = EH (Ch.56) 
 

PROVE: The orbit of Mars is an ellipse with major axis AC, 
  and N is a focus. 

 
 
Join NK, NM, NE, NB. 
Join KH, drop NT perpendicular to KH (produced if necessary). 
 
Hence  NM = KT      [Ch. 57, 58] 
 
Complete the square on KL (i.e. KPQL) and its gnomon on KM (i.e. gnomon KOQ). 
Complete the square on EH (i.e. EHCS) and its gnomon on EB (i.e. gnomon ERC). 
 
Now  KN2 – NM2 = (KL2 + LN2) – (ML2 + LN2)  [1.47] 
so  KN2 – NM2 = KL2 – ML2  
so  KN2 – KT2 = gnomon KOQ    [NM = KT] 
i.e.  TN2 = gnomon KOQ     [1.47] 
so  TN2 : gnom ERC = gnom KOQ : gnom ERC 
so  TN2 : HN2 = gnom KOQ : gnom ERC   [since BN = EH,  

Protheorem 7 applies] 
 

But  TN : HN = KL : KH     [rKHL and rNHT  
similar] 

so  KL2 : KH2 = gnom KOQ : gnom ERC 
so  KL : EH = KM : EB     [converse of Protheorem 6] 
alt  KL : KM = EH : EB 
so  KL : KL – KM = EH : EH – EB  
so  KL : ML = EH : BH 
 
But M is a random point on the orbit of Mars. Therefore the orbit of Mars is the locus of points 
cutting perpendiculars (such as KL) dropped from the circle to its diameter all in the ratio of EH : 
BH. But the locus of such points is an ellipse with its major axis being the diameter of the circle 
(converse of Protheorem 1). Therefore the locus of points M is an ellipse with major axis AC, i.e. the 
orbit of Mars is such an ellipse. And since B is also a point on the ellipse, and HB is perpendicular to 
the midpoint of major axis AC, HB is the semi-minor axis, and since BN = EH = HC, therefore N is 
the focus. So the Sun is at one focus of the elliptical orbit of Mars. 
 
Q.E.D. 
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PROTHEOREM 15 
 
 
This one begins “But let us complete the proof.” What is left to 
complete? 
 
There appear to be two things left which Kepler wants to 
establish in this protheorem: 
 (1) That the proportionality of areas and times in the 
ellipse, and in the Old Circular Hypothesis, match each other and 
match the observations. 
 (2) That his physical hypotheses are now confirmed. 
 
 
 
 
 (1) As for the areas and times business, he distinguishes a MAJOR premise, a 
MINOR, and a CONCLUSION: 
 
MAJOR: Elliptical area AMN is as the sum of the distances from N to elliptical arc AM, and 
that sum of distances is the same as the sum of the same number of distances from N to the 
equal parts of the circular arc AK. This he takes as previously demonstrated. 
 
MINOR:  Circular AKN : Elliptical AMN = Semicircle AKC : Semi-ellipse AMC. 
 Moreover, if we take arcs AK, AM very small (e.g. 1 degree, as he will do later in the 
empirical version of this argument), and take a bunch of tiny, equal arcs on the circle AM, 
etc., then, since “the ratio of equimultiples is the same,” he derives the following... 
 
CONCLUSION: Circular area AKN also measures the sum of diametral (or elliptical) 
distances along arc AM, there being as many of these distances as there are equal arcs on AK 
(an infinity, if you want to get exact!). 
 
He seems to be aware that he is being unclear, so he goes back to the way he discovered this 
fact, i.e. empirically. He divides the circle into 360 equal arcs, i.e. individual degrees. If we 
drew distances from N to the endpoints of these arcs, giving us 360 distances to the circle, 
then in terms of the radius HC = 100,000 the average distance will be 100,000, so that if we 
multiply this average times 360 we should get the total, and hence the total of all the unequal 
distances is 36,000,000. But that is to the circle. What about to the ellipse? For that, we need 
to replace distance NK with “diametral” distance NM = KT, and distance NI with 
“diametral” distance NY = TI. He does this for each of his 360 arcs. Now note that KT + TI 
= 200,000. So too every pair of “diametral distances” = 200,000, and we will have 180 pairs 
of these, and hence our total distance-sum is still (200,000) × 180 = 36,000,000. 
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The whole interest in the distance-sums is that he thinks these must be proportional to the 
times, as we saw before. But he also saw that the areas in the circle were proportional to the 
elapsed times. Now he needs to see that this will work also for the areas of the ellipse; and he 
is saying that he discovered the rule of proportions (i.e. that the area AKN : area AMN = 
semicircle AKC : semi-ellipse AMC) “empirically.” This is strange, since that is a matter of 
pure geometry and, as he says above, was shown in Protheorem 3. Anyway, he bumped into 
it empirically, or first verified it empirically, it seems. 
 
So he verifies that the proportion holds good, taking the distance-sum in one sector, like 
AMN, and finding its ratio to the whole 36,000,000 units of distance, and seeing that this is 
the same ratio as that which the time in arc AM has to the whole period (360° of time). He 
says that this way of estimating the ratios of areas was quite exact, which is what he means 
in saying “This produced exactly the same results ... as would have come out had I 
multiplied half the eccentricity [i.e. ½ HN] by the sine of the eccentric anomaly” [i.e. by the 
sine of ∠KHA, i.e. by KL]—for this multiplication produces the area of rKHN, which, 
added to circular sector KHA, and compared to the area of the circle, gives the same ratio. 
 
 
As often happens, Kepler’s zeal for clarity leaves something to be 
desired. Another way to put it all is thus: 
 
We saw, principally by observation, that areas in our Simple-Circle 
Hypothesis (in which we initially thought the orbit of Mars was a 
perfect circle) were as the times in which Mars swept them out 
around the Sun. That is, when Mars is at M, the time it took to go 
through arc AM in its orbit is to its whole period as the area NKA is 
to the area of the whole circle. But we want the area-law to be 
maintained within the ellipse itself, or to see whether that is the 
case or not. Well, we already know, by observation, that 
 
(a) Time AM : Whole period of Mars = Area NAK : Whole 
circle 
 
But, by Protheorem 3, we also know that 
 
(b) Area NAM : Whole ellipse = Area NAK : Whole circle 
 
Hence we now conclude that 
 
(c) Time AM : Whole period of Mars = Area NAM : Whole ellipse 
 
 
To refresh ourselves on Step (b), reason thus: 
 
 Area AML : Area AKL = ML : KL  [from Prothm. 2] 
but rNML : rNKL = ML : KL   [Euc. 6.1] 
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so Area NAM : Area NAK = ML : KL  [adding first ratios] 
i.e. Area NAM : Area NAK = BH : EH  [Prothm. 1, BH : EH = ML : KL] 
but Whole ellipse : Whole circle = BH : EH [Prothm. 2] 
so Area NAM : Area NAK = Whole ellipse : Whole circle 
alt Area NAM : Whole ellipse = Area NAK : Whole circle 
 
Since the areas in the circle are exactly as the times, and the areas in our ellipse are exactly 
as the areas in the circle, therefore the areas in the ellipse are also exactly as the times. 
Kepler’s Second Law is still safe, despite the transition from circle to ellipse. 
 
 
(2) PHYSICAL HYPOTHESES CONFIRMED. “And unless the physical causes that I had 
taken in the place of principles had been good ones, they would never have been able to 
withstand an investigation of such exactitude,” says Kepler. 
 So he is reasoning not like this: “If my physics were right, the following would be 
true; but the following is true, therefore my physics is right,” but like this: “If AND ONLY 
IF my physics were right, then the following would be exactly true, but it is exactly true—
everything I check that follows from my physics is exactly true, and therefore my physics is 
true.” This hearkens back to Ch. 21, where he wants to defend his entire method, and say that 
his way of deriving the truth from his theory proves the truth, not just the probability, of his 
theory. Much less does his method, as he sees things, achieve no more than agreement with 
the appearances. 
 Then again, his magnetic ideas are wrong. His idea about the speeds being inversely 
as the distances from the sun is not exactly right, either. So how did he get the truth about the 
shape of the orbit and about the 2nd Law? What “physics” did he get right? 
 I think we can sum up the correctness of his physics thus: 
 (a) The motion of the planets is due to the influence of the Sun. 
 (b) That influence decreases somehow with distance. 
 (c) Hence the speeds of the planets will decrease with distance from the Sun, and, 
thanks to the nearly-circular orbits of the planets, the speeds will be almost inversely as the 
distances. 
 (d) We might also add that the planets, like earthly stuff, are sluggish, and hence they 
tend to keep their axes parallel unless something else interferes (contrary to Copernicus’s 
idea). This is more peripheral, however. 
 (e) The influence of the Sun upon the planets is “immaterial,” i.e. passes through 
intervening empty space and bodies alike. 
 (f) The influence of the Sun upon the planets is somehow in proportion to the masses 
of the Sun and each planet (at least he thinks something like this is true between the earth 
and moon). 
 (g) The influence of the Sun upon the planets is something like magnetism. 
 
There is a whole lot of physical truth in all that! 
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KEPLER 

 
DAY 50 

 
“AFTERMATH” 

 
 
In this final day, we will cover the following material: 
 
(1) The word “focus.” 
(2) The near-circularity of the Martian orbit. 
(3) What became of the equant. 
(4) A regret over the lines of apsides. 
(5) A note on the telescope. 
(6) What we learn, in the end, about the process of discovery, by reading the New 

Astronomy. 
 
 
 

(1) THE WORD “FOCUS” 
 
 
Apollonius called the foci of a conic section the “points of application,” since he derived 
them by applying a certain area to a line. It is Kepler who first dubbed such a point a 
“focus,” from the Latin for “hearth” or “fireplace,” since the Sun sits at one such point in the 
elliptical orbit of each planet. He does this in The Epitome of the Copernican Astronomy, 5.3: 
“I am accustomed to calling these two points the ‘foci’.” The “focus” or hearth is both a 
place where the fire is (like the Sun) and it is also the center of the home (as the Sun is the 
center of the world for Kepler). 
 
 

(2) THE NEAR-CIRCULARITY OF THE MARTIAN ORBIT 
 
To appreciate Keplerian precision, one must see, visually, just how nearly circular the orbit 
of Mars is. Not only that, but among the planets that Kepler was studying, Mars was 
practically the most elliptical, the least circular (and that is not accidental; it is the planet 
most of all refusing to move in a circle, most obviously “off,” and so most easy to crack, as it 
were; Mercury is perhaps more elliptical still, but it presents difficulties, as its elliptical orbit 
has a fairly rapid rate of precession, and it is so close to the sun as to be hard to observe, and 
it is so close to the sun that there is a complex “wiggle” in its line of apsides. And Pluto—
well, he didn’t know about Pluto, and it is no longer ranked among planets). 
 
 
 



 154 
 

 
First of all, here are some numbers: 
 
Let BL be the semi-minor, AP the major (and line of apsides), CA the aphelial distance, AD 
the perihelial distance, BL : BD the ratio of eccentricity or “ellipticalness,” and we have, in 
modern figures, for each of the planets, the following: 
 
 
 
 AC  AD  CD  BD  BL  BL : BD 
 
 

Mercury 47  31  78  39  38.170669 .978735 
 
Venus  73  72  145  72.5  72.498275 .999976218 
 
Earth  101  98  199  99.5  99.4886928 .99988636 
 
Mars  166  138  304  152  151.35  .995749276 
 
Jupiter  545  495  1040  520  519.39869 .998843636 
 
Saturn  1001  900  1901  950.5  949.157521 .998587607 
 
Uranus  2008  1828  3836  1918  1915.8873 .9988985 
 
Neptune 3033  2979  6012  3006  3005.8787 .9999597 
 
Pluto  4930  2960  7890  3945  3820.0524 .9683276 
 

 
Now, taking that ratio of the major to minor axis, BD : BL (i.e. the halves), and putting them 
in order of increasing ellipticalness, we get: 
 
Venus   = .999976218  (least elliptical) 
Neptune  = .999597 
Earth   = .99988636 
Uranus  = .9988985 
Jupiter   = .998843636 
Saturn   = .998587607 
Mars   = .995749276 
Mercury  = .978735 
Pluto   = .9683276  (most elliptical) 
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Here is a figure to show just how elliptical the most elliptical orbit is, i.e. the orbit of Mars. 
 
 
 
 
 
 
 
 

A = Sun 
B = Center of the eccentric circle CED 
Q = Equant 
BE is perpendicular to CD 
BE = 100,000 
EL = 432, the “breadth of the lunule” 
BL = 99,568 
 
The inner curve through C, L, D is an 
ellipse with 
 Center B 
 Foci A and Q 
 Major axis CD 
 Semi-minor axis BL 
And it is the true orbit of Mars. 
 
So the ratio of minor to major 
in the elliptical orbit is .99568. 
Note: The ellipticalness in this 
figure is still somewhat exaggerated. 
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(3) WHAT BECAME OF THE EQUANT 

 
 
With the new area-law in place for clocking the 
motions of planets around the sun, what becomes of 
the equant? Is it the other focus in the ellipse? Is it the 
case that the planet sweeps out equal angles in equal 
times around that other focus? 
 No. For if possible, let it be so. Let AB be the 
major axis, S the sun at one focus, E the other focus, 
and draw EP and ST perpendicular to the axis AB, 
thus forming equal ordinates. Join SP, ST, PT. 
 Since E is the presumed equant-point, and 
∠AEP = ∠PEB, therefore the planet spends equal 
times in arcs AP, PB. 
 Since the planet spends equal times in those 
arcs, in describing them it sweeps out equal areas 
around the Sun. Hence area SAP = area SPB. 
 
i.e. 1 + 2 = 3 + 4 + 5 
 
But 1 = 3 
and 2 = 4  from the symmetry of the ellipse. 
 
Thus 3 + 4 = 3 + 4 + 5, 
 
which is absurd. 
 
Therefore, if the area law is true, E cannot be the equant. 
 
Can any point be the equant-point? It turns out to be mathematically impossible! (How 
amazing that Kepler discovered the area-law through an equant-point which, strictly 
speaking, is not compatible with the area-law.) There is a proof for this which is not 
elementary, so it will not be presented here. But it is mathematically demonstrable that if a 
body moving on an ellipse sweeps out equal areas in equal times around the focus, it does 
not sweep out equal angles in equal times around any point at all. The following is an 
attempt to argue for this in a somewhat elementary fashion. 
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THE EQUANT IMPOSSIBILITY THEOREM 

 
 

 
 

If a body moves in an ellipse and sweeps out equal areas in equal times 
around one focus, then there is no point around which it sweeps out equal 
angles in equal times. 

 
 
Let a body move on an ellipse with major axis AP, sweeping out equal areas in equal times 
around focus S. 
 
I say there is no point around which the body sweeps out 
equal angles in equal times. 
 
For, supposing there were such a point inside the ellipse, 
it would have to lie along AP. To see this, consider any 
point Z inside the ellipse but off AP. The angle AZP 
facing arc PRA will not be equal to the angle AZP facing 
arc ALP, but the times through arc ALP and arc PRA 
must be equal, since the areas they embrace are equal. 
Hence the body sweeps out unequal angles in equal 
times around Z. Hence Z is not the point around which 
the body sweeps out equal angles in equal times. 
Therefore such a point, if there is one, must lie on AP. 
 
Now let the other focus be called Q. Draw ∠AQT very 
acute, and extend TQ to V (so ∠AQT = ∠VQP). What is 
the ratio of the times in arc AT and arc PV as this angle 
about Q shrinks to nothing? 
 
Well, since speed = distance/time, therefore time = distance/speed. 
 
So the time in arc AT is the distance (i.e. arc AT) divided by the average speed in arc AT. Or, as arc 
AT gets smaller (as rt goes to zero), 
 
 
   [ultimately] 
 
 
 
since the average speed in arc AT is ultimately equal to the speed at A, and the length of arc AT is 
ultimately equal to chord AT. 
 
 
 
 

Aatspeed
ATarcATintime =

AT

Q

C

S

P
V

RL

Z
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So  
 
 
i.e. 
 
 
 
so 
 
 
 
since, when the areas are as the times around S, then 
 
  speed at P : speed at A = SA : SP 
 
as Kepler and Newton both say. 
 
 
But  TQ : QP = AT : PV  [since rTQA is similar to rPQV] 
 
and  TQ = QA   [ultimately] 
 
so  QA : QP = AT : PV  [ultimately] 
 
but  QA = SP 
and  QP = SA 
 
so  SP : SA = AT : PV  [ultimately] 
 
 
thus  
 
 
 
i.e.  time in ∠AQT = time in ∠QPV [ultimately] 
 
So, toward aphelion and perihelion, the times spent in arcs that make equal angles around Q get as 
close to being equal as we please (as ∠PQT shrinks). Plainly, at any other point along AP, the 
ultimate ratio of such times will not be equality, and therefore if there is a point around which the 
body sweeps out equal angles in equal times it must be Q, the empty focus. 
 
 
 
 
 
 
 
 
 
 

PatspeedPV
AatspeedAT

QPVangleintime
AQTangleintime

=

Aatspeed
Patspeed

PV
AT

QPVangleintime
AQTangleintime

⋅=

SP
SA

PV
AT

QPVangleintime
AQTangleintime

⋅=

SP
SA

SA
SP

QPVangleintime
AQTangleintime

⋅=
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Draw QB perpendicular to AP. 
Draw SN perpendicular to AP. 
Join BN. 
Join BS. 
 
By symmetry it is evident that BQSN is a rectangle, and area 1 = area 4, and r2 = r3. 
 
Now suppose the body sweeps out equal angles in equal times around Q. 
Since ∠AQB = ∠BQP, the time in arc AB is equal to the time in arc BP. But therefore, by our 
givens, 
 
 Area SAB = Area SBP 
 
i.e. 1 + 2 = 3 + 4 + 5 
 
which is absurd, since then area 5 would be nothing. 
 
Therefore the body does not sweep out equal angles in equal times around Q. 
 
But we saw that if it did sweep out equal angles in equal times around any point at all, it would have 
to be Q. Therefore it does not sweep out equal angles in equal times around any point at all. 
 
Q.E.D. 
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(4) A REGRET OVER THE LINES OF APSIDES 
 
In his Introduction to the New Astronomy, Kepler promised to prove that all the lines of 
apsides of the planets pass through the physical body of the Sun. What a compelling and 
exciting fact! In the interests of brevity, we mentioned this but did not present it. It is a 
strong piece of evidence in favor of heliocentrism. 
 But Kepler’s three Laws of Planetary Motion are themselves very convincing 
evidence, too. The planets all make almost perfectly exact ellipses around the Sun, with the 
Sun almost exactly at the common focus of all those ellipses—and the same is true for Earth, 
if we attribute the relative motion between it and the Sun to it and not to the Sun. But if we 
take Earth as the immobile center, and refer the motions of the planets to it, they certainly do 
not make exact ellipses around it, with the Earth at the common focus of all. Hm. Almost 
makes one want to be a heliocentrist, doesn’t it? Again, the planets sweep out areas exactly 
as the times around the Sun—but around Earth, they sometimes stop and stand still, go 
backwards, start going forward again. It is entirely impossible for them to sweep out areas as 
times around the Earth. Almost makes it seem as though the Sun, not the Earth, is the 
significant point around which the planets are moving, doesn’t it? 
 
 
 

(5) A NOTE ON THE TELESCOPE 
 
 
Kepler, a contemporary of Galileo, lived to see the invention of the telescope, and to use it. 
He observed Jupiter’s moons, for instance. He lived from 1571-1630. 
 
 
 

(6) WHAT WE LEARN, IN THE END, ABOUT THE DISCOVERY PROCESS, BY 
READING THE NEW ASTRONOMY 

 
 
Kepler’s New Astronomy is prolix and difficult, and in no small part this is due to its nature 
as a record of discovery rather than as a clean presentation of facts and demonstrations. 
Kepler excuses himself for this choice in the Summary to Ch. 45, saying that he finds the 
discovery process through which the human mind must go every bit as marvelous as the 
heavenly bodies themselves. So he records his own process, in case we can make something 
of it, and learn how to make discoveries ourselves. This is directly the opposite of what 
Euclid does, who hands us demonstrations in perfect clarity, but leaves us utterly in the dark 
as to how anyone might have discovered such things. 
 
So: What do we learn about discovery from Kepler? Here are a few thoughts, in no particular 
order. 
 
(1) IMAGINATION is crucial. We have to be able to invent, imagine new ideas quite before 
testing them. And they must be somehow based on what we already knew before, but not 
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merely as demonstrable conclusions. We have to be able to follow the hints and suggestions 
of nature. There is creativity, here. It is not random guesswork, but the efforts of a 
disciplined imagination. 
 And we see this in Kepler when he thinks up a new possible path for Mars to follow, 
or a new rule for determining true distances. And we see even in his writing style that he is 
endowed with a mighty imagination. 
 
(2) OPENNESS of mind is crucial. If one will not accept anything but the things one is 
perfectly sure about already, one will discover nothing. One must be willing to entertain 
possibilities, to range them all, or all the likely ones, in one’s mind, without insisting upon 
judging them, without deciding among them, right away. This means considering even 
conflicting ideas at the same time, without deciding between them. 
 We see this when Kepler gives fast-and-loose “proofs” of things, as though that is 
good enough when we are in discovery mode, i.e. it proves the idea is worthy of more exact 
consideration. 
 Along with this, EXPECT THE UNEXPECTED, because you will not be struck by it 
otherwise. And it is the thing most worth knowing. 
 
(3) ATTENTIVENESS TO STRIKING THINGS is crucial. When we discover, in a way, we 
are only partly active, but we are largely passive. We actively bring things before our minds, 
but then we have to sit back and let them strike us, do things to us, get our attention. 
 We see this in Kepler with his Secant of the Greatest Optical Equation, back in 
Chapter 56 of the New Astronomy. 
 
(4) THE HUMAN MIND GOES BACK AND FORTH. When people argue, they are 
arguing “back and forth,” on opposite sides of a question. And when we search for the truth, 
which is what reason spends most of its time doing, it looks back and forth between the 
alternatives. It reasons backwards and forwards to try to get at the same thing from opposite 
ends (e.g. analytic geometry). Like the human eyes shifting back and forth, this is the 
movement of UNCERTAINTY and also of SEARCHING, of attempting to determine a 
preference between alternatives—it is also the movement of WIDENING one’s view to be 
most likely to take in something significant on the horizon—scanning. One might say that 
the human mind “reciprocates,” to use Kepler’s own language. 
 It is typical also of the human mind to change its mind about things. To go back to a 
former opinion. We see this often in Kepler. 
 And it is also typical of the human mind to improve old thoughts, even without 
overturning them, but by refining them by our many revisitations to them. “Defining,” for 
example, is largely a matter of “refining” our initial understanding of what something is. And 
we see this with Kepler, too. The ellipse itself is not so much a trashing of the initial circular 
hypothesis, but an adjustment of it, especially in Kepler’s view of things. 
 It is also typical of the human mind to know things better in light of their opposites. 
So we look back and forth, each time seeing this thing in light of a fresh and recent 
appreciation of its opposite. 
 
(5) WILLINGNESS TO ABANDON OLD IDEAS is crucial, too. Kepler is quite willing to 
say “the physical ideas of Ch. 45 go up in smoke.” He pours out sweat, blood, tears over 



 162 
 

some result, but when he finds it is false, he dumps it without hesitation, and manfully starts 
again. Such a man deserves to discover great things! 
 On the other hand, KEEPING OLD IDEAS is to some extent crucial. This is a matter 
of moderation. Hence we keep the initial circular hypothesis at least as a tool, because it gets 
the equations right (i.e. the times). And we keep the equant, because we believe in a 
uniformity of planetary motion (whether of divine or natural origin). And if we throw out 
everything, we no longer have anything from which to start. So Kepler is fond of his “6 
physical axioms of very great certainty.” We must often come back to our touchstones—to 
what we really know. Mere willingness to doubt everything will get us nowhere. 
 Also, we see in Kepler a tendency to retain old ideas picked up along the path of 
discovery in his final idea, even if the old ideas are not really essential to it. Kepler’s equant, 
the circular path, the epicycle, are all instances. He still sees the ellipse as “an adjusted 
circle,” and his physics is meant to cause that adjustment. 
 
 
(6) GOOD OLD-FASHIONED STUBBORN PERSISTENCE is crucial. If Kepler were 
willing to fail only once, or only a hundred times, he would not have gotten where he got. 
“He who would find gold must be willing to dig up much earth and find very little,” as one 
of the pre-Socratics said. 
 This means we must love the truth and desire to know it strongly enough to motivate 
us through all that pain and toil. So where wonder is feeble, important intellectual discovery 
will not take place. 
 We must even delight in being proved wrong, as a sign that we are a little closer to 
the truth: we now know that this is not it! We have been emancipated from that error! So it 
has been said that a scientist delights in nothing more than in finding facts that conflict with 
his theory. This is delightful, too, because our theory is the thing that seemed most plausible 
to us before—when it turns out false, that means the truth is something stranger than we had 
thought at first, and that makes us want to find out what it is all the more. 
 
 
(7) HOW THE FALSE LEADS TO THE TRUE is something we see illustrated in the New 
Astronomy, and Kepler even discusses this in Ch. 21. How exactly does the false lead to the 
true? 
 (a) INDIRECTLY. What is slightly false can lead to what is entirely true, despite the 
slight falsehood. For instance, Kepler discovers the area-law based on a slightly false idea of 
the rules for speeds in a planet. He thinks the speeds are inversely as the solar distances, 
when really they are inversely as the perpendiculars from the sun to the tangents at the places 
where we are comparing the speeds. 
 (b) DIRECTLY, or nearly so. As far as our mode of discovery is concerned, there is 
something too difficult about discovering the true through the true. The true is exactly what 
we are trying to find. So what we must do is find the true through the false—that is, through 
something false which has enough truth in it to bring us to the true, but which differs from 
the true enough that it will occur to us without too much effort. 
 (c) And this is the importance of NATURAL MISTAKES, errors which are stepping-
stones to the discovery of the truth, without which we would not discover the truth. Nor do I 
think this is entirely a fact of the human mind, but to some extent physical reality itself, as 
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though it were made in order to instruct the human mind, is full of things which will strike 
our senses, and give us basically the right idea, which, upon closer examination, requires 
further refinement—and then that refinement, too, at the next level of experience of nature, 
will turn out to need further refinement still, and so on. 
 
 
(8) WE OFTEN DISCOVER A GENERAL RULE BY FIRST BUMPING INTO THE 
MOST KNOWN OR SIMPLEST INSTANCE OF IT. This fits with human nature’s funny 
combination of senses and reason. First, in our sense experience, we encounter a particular 
instance of something, and recognize that it is a particular instance of something, but we are 
not sure of what. We find an example of this in Kepler with his discovery of the rule of 
switching the “radius for the secant” in Chapter 56 of the New Astronomy. And he gets the 
general rule wrong at first. 
 
 
(9) CHANCE AND LUCK. We can’t get these entirely out of the process. Otherwise, there 
would be a simple procedure: Do A, B, C and you will make a world-class discovery. No 
such luck! We find it in Kepler when he says “Quite by chance” he had been considering the 
secant of the greatest optical equation in Ch. 56. 
 
 
(10) WE OFTEN DISCOVER BY RECOGNIZING SOMETHING WE ALREADY KNEW 
IN A NEW GUISE, or unfamiliar context, e.g. the ellipse under the disguise of being the 
locus of points constructed by the “reciprocation” rule. This is the “forehead slap” ingredient 
in nearly all great discoveries. 
 
 
(11) Last, but by no means least, IN PHYSICS WE OFTEN MAKE DISCOVERIES BY 
APPROACHING FROM MANY VANTAGE POINTS, i.e. by the harmonizing of 
PHYSICAL and GEOMETRICAL principles, independently thought-up. This is throughout 
Kepler. 
 This is probably the most important element of his method of discovery, and his most 
unique contribution. Get the physics right, and the math will follow. Get the math right, and 
the physics will suggest itself. With the truth, all things harmonize (as Aristotle said in his 
Nicomachean Ethics). 
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